1.	The number of words can be formed by using the letters of the word Mathematics that strart as well as end with			10. If $\cos (\alpha + \beta) = 4/5$ and $\sin (\alpha - \beta) = 5/13$, $0 < \alpha, \beta, \pi/4$, then $\tan (2\alpha) =$				
	Tis				63/65			
	(a) 80720	(b) 90720	(c) 1	* *	33/56 A			
	(c) 20860	(d) 37528 B	(6)	(u)	NIMCET-2012			
2	If A. D. =/// 4h == (1 + 4a	NIMCET-2012		π $\lceil \tau \rceil$	2π $(n-1)\pi$			
2.		n A) (1 - tan B) is equal to	11. The va	alue of $\lim_{n \to \infty} \frac{\pi}{n} \sin \frac{\pi}{n} + \sin \frac{\pi}{n}$	$n\frac{2\pi}{n}++\sin\frac{(n-1)\pi}{n}$ is			
	(a) 2 (c) 0	(b) 1 (d) 3 A						
	(c) 0	(d) 3 A NIMCET-2012	(a) 0	(-)	π			
3.	Let P(E) denote the proba		(c) 2	(d)	π/2 C			
٥.		value of P (AlB) and P (BlA)	NIMCET-2012					
	respectively are	varue of 1 (1112) and 1 (2111)			- x^2 , where the tangent is			
	(a) $\frac{1}{4}, \frac{1}{2}$	(b) ½, ¼	-	el to x - axis is	(2.0)			
	(c) ½, 1	(d) $1,\frac{1}{2}$ D	(a) (0		(2,8)			
		NIMCET-2012	(c) (6	(0,0)	(3,9) D			
4.	The number of differen	t license plates that can be			NIMCET-2012			
	formed in the format 3 En	glish letters (A Z) followed		$\int_{0}^{1} ax^{3} dx^{3} dx^{$	$\frac{2}{1}$ $\frac{2}{1}$ $\frac{2}{1}$ $\frac{2}{1}$			
	•	repetitions allowed in letters	13. If $I_1 = \frac{1}{2}$	$\int_{0}^{2^{n}} dx$, $I_{2} = \int_{0}^{2^{n}} dx$, I_{3}	$= \int_{1}^{2} 2^{x^{2}} dx, I_{4} = \int_{1}^{2} 2^{x^{3}} dx,$			
	and digits is equal to			0 0	1 1			
	(a) $26^3 \times 10^4$	(b) $26^3 + 10^4$	then	_ I (b)				
	(c) 36	(d) 26^3 A	(a) I		$\begin{array}{ccc} & I_2 > I_1 \\ & I_4 > I_3 \end{array} \qquad \qquad D$			
_	TTT : 1 C.1 C.1	NIMCET-2012	(C) 1 ₃	$\frac{1}{3} > \frac{1}{4}$	NIMCET-2012			
5.	Which of the following i							
	(a) $\sin 1^{\circ} > \sin 1$	(b) $\sin 1^{\circ} < \sin 1$	14. The va	alue of integral $\int_0^{\pi/4} \log$	tan x dx is			
	(c) $\sin 1^\circ = \sin 1$	(d) $\sin 1^{\circ} (\pi/180) \sin 1$ B NIMCET-2012						
6.	If two towers of heights h	n ₁ and h ₂ subtends angles 60°	(a) π	` '	$\pi/2$			
0.	and 30° respectively at th	$\frac{1}{1}$ and $\frac{1}{1}$ subtends angles of e end point of the line joining	(c) π	d/3 (d)	0 D			
	their feet, then h_1 : h_2 is	e end point of the fine joining	45		NIMCET-2012			
	(a) $1:2$	(b) 1:3			andom from the set of all			
	(c) 2:1	(d) 3:1 D			order 2 with elements 0			
		NIMCET-2012		oniy. The Probability tha -zero is	t the determinant chosen			
7.	If the vectors $\frac{\pi}{2} - (1 \text{ v})$	-2) and $\overline{b} = (x,3,-4)$ are			3/8			
٠.			(c) 1	` '	None of these B			
	mutually perpendicular,		(6)	(4)	NIMCET-2012			
	(a) -2	(b) 2	16. If sin ²	$x = 1 - x, \cos^4 x + \cos^2 x$				
	(c) 2	(d) -4 A NIMCET-2012	(a) 0		1			
		NEVICE 1-2012	(c) 2	` '	-1 B			
		$\int_{\alpha_{i,n}} \frac{\pi}{n} dx$, 5	NIMCET-2012			
		$\int \sin x \mathrm{if} \leq \frac{\pi}{2}$	17. The ed	guation of the plane pa	ssing through the point			
8.	What is the value of a for	which $f(x) = \frac{1}{\pi}$ is			or $\overline{N} = 3i - j + 2k$ as its			
		$ ax \text{ if } x > \frac{\pi}{2}$			or $N = 51 - J + 2K$ as its			
		_	norma		2 2 7 0			
	continuous ?	(b) $\pi/2$		-	3x - y + 2z + 7 = 0			
	(a) π	(b) π/2 (d) 0 C	(c) 3:	$x - y + 2z = 7 \tag{d}$	$3x + y + 2z = 7 \qquad C$			
	(c) $2/\pi$	NIMCET-2012			NIMCET-2012			
9.	If the real number x who	en added to its inverse gives		$\sin^2 x$ c	os ² x			
	the minimum value of th	the sum, then the value of x is	18. The va	alue of $\int_0^{\pi} \sin^{-1} 5t dt +$	$\int_{0}^{\infty} \cos^{-1} 5t dt is$			
	equal to	(b) 2	(a) π	-/Δ (b)	$\pi/2$			
	(a) -2	(b) 2 (d) -1 C	(c) 1		None of these W			
	(c) 1	NIMCET-2012	(6)	(u)	NIMCET-2012			
		1 (11/101/1-2012			1 (11/10111-1011			

	root	s of the equation are in	maginary is			(0)	-/2	a 0 15	<i>(</i> L)	-/2		
	(a)	7/8	(b) 5/8			(a)	$\pi/2$			$\pi/3$		_
	(c)	3/8	(d) 1/8	NIMCET-201	A 2	(c)	$\pi/4$		(d)	π/6	NIMCET-20	В 012
20.	In a	class of 100 students,	55 students	s have passed i	n 29.	If 6	$\theta(0 \le \theta \le \pi)$	is the ang	ıle	betwee	en the vect	ors
		hematics and 67 stude					(= = =)		>			
		n the number of stu-	_					$ \bar{a} \times \bar{b} $				
		sics only is		1		a a	$nd \overline{b}$, then	$\frac{ \mathbf{r} }{ \mathbf{r} }$ equ	als			
	(a)	=	(b) 33				0 /	a.b ¹				
		10	(d) 45]	D	(a)	- cot θ		(b)	tan θ		
	(-)		()	NIMCET-201	2				` ′			ъ
21.	If H	I is the Harmonic me	an between			(c)	-tan θ		(a)	cot θ		В
				🕻,							NIMCET-20	
	H -+	$-\frac{H}{O}$ is			30.	Iff((a+b)=f(a)	x f(b) for all	a a	nd b and	d f(5) = 2, f'(0)))=
	P	Q IS				3, th	nen f'(5) is					
			ъ. о			(a)	2		(b)	4		
	(a)	2	(b) $\frac{P+Q}{Q}$			(c)	6		(d)	8		C
	(u)	2	(b) Q								NIMCET-20	012
		PO			31.	If (4	, -3) and (-9,	7) are the ty	wo v	vertices	of a triangle a	and
	(c)	$\frac{PQ}{P+O}$	(d) None	of these	A		1) is its centr					
		r+Q		NIIN COEFE AGA	_	,					8	
22	TD1	1 6 1 6	TZ C 1	NIMCET-201		(a)	$\frac{138}{2}$		(h)	$\frac{319}{2}$		
22.		number of values of		•		(u)	2		(0)	2		
	_	ations $(k+1)x + 8y = 4$		(K+3) y = 3K -	1		192			201		
		infinitely many solution				(c)	$\frac{183}{2}$		(d)	$\frac{381}{2}$		C
	(a)		(b) 1			()	2		` /	2		
	(c)	2	(d) Infinir		В						NIMCET-20	012
22	TEM .	C20G 20G 21	a 22a	NIMCET-201	32.	The	equation of	the ellipse v	vith	major a	axis along the	e x-
23.	The	$\sup_{320} \text{ of } {}^{20}\text{C}_8 + {}^{20}\text{C}_9 + {}^{21}\text{C}_9$	$C_{10} + {}^{22}C_{11} - {}^{22}C_{11}$	$^{23}C_{11}$ 1S		axis	and passing	through th	e po	oints (4,	3) and (-1, 4	·) is
	(a)	²² C ₁₂	(b) ${}^{23}C_{12}$ (d) ${}^{21}C_{10}$			(a)	$15x^2 + 7y^2 =$	247	(b)	$7x^2 + 1$	$5y^2 = 247$	
2.4	(c)	0	(d) ${}^{21}C_{10}$		C		$16x^2 + 9y^2 =$					В
24.		value of the Cot-1 (21)		18			•				NIMCET-20	012
	(a)	0	(b) ∞		. 33.	Ifth	e circles x ² +	$v^2 + 2kv + 0$	5=	0 and x^2	$+ y^2 + 2ky +$	k =
	(c)	π	(d) $\pi/2$		7		teresect orth				. ,, .	
25		11 2	2 2	NIMCET-201			_					
25.		mal to the curve $y = x^3$	-3x + 2 at t	ne point (2, 4)	1S	(a)	$2 \text{ or } -\frac{3}{2}$		(h)	-2.or	$-\frac{3}{}$	
	(a)	9x - y - 14 = 0				(u)	2		(0)	- 01	2	
		x - 9y + 40 = 0					2				2	
		x + 9y - 38 = 0				(c)	$2 \text{ or } \frac{3}{2}$		(d)	-2 or	3	A
	(d)	-9x + y + 22 = 0			C	` /	2		` ′		_	
26		11 . 3.6.1	,	NIMCET-201							NIMCET-20	012
26.	A pi	roblem in Mathematic	es is given to	o three studen	ts 34.	Foc	us of the par	abola x² + y	r ² - 2	2xy - 4(2	x + y - 1) = 0	is
				. 111	l	(a)	(1, 1)		(b)	(1, 2)		
	A, E	3 and C whose chance	es of solving	g it are $\frac{1}{2}, \frac{1}{3}, \frac{1}{2}$	1	(c)	(2,1)		(d)	(0, 2)		A
	recn	ectively. If they all try	to solve the	nrohlem wh	af						NIMCET-20	012
	_	e probability that the		-		TC →	. i			1. 41.	., → . , , →	0
		1/2	(b) 1/4	i be solved.	35.	II a	, b and c a	re unit vect	ors	such th	$at \vec{a} + \vec{b} + \vec{c} =$	=0,
		1/3	(d) $3/4$	1	D	ther	the value o	of \vec{a} $\vec{b} + \vec{b}$ \vec{c}	+ c	₃ is		
	(C)	1 / 3	(u) 3/4	NIMCET-201		tiici	r the varae o	1 a.b b.c	10	.a 15		
27.	The	function x ^x decreases	in the inter				2			-2		
<i>-1</i> .		(0, e)	(b) (0, 1)	vui		(a)	- 3		(b)	$\frac{-2}{3}$		
	(4)		(0, 1)				-					
	()	$\left(0,\frac{1}{2}\right)$	(1) 37	C .1		(a)	$\frac{3}{2}$		(J)	$\frac{-3}{2}$		D
	(c)	$\left(0,\frac{1}{e}\right)$	(d) None	of these	C	(c)	$\overline{2}$		(a)	2		D
		·		NIMCET-201	2						NIMCET-20	012
					_							

	number, then the vectors $a+2b+3c$, $kb+4c$ and	that of heads on 51 coins; then the value of P is
	$(2\lambda - 1)\overline{c}$ are non-coplanar for	
	(a) All values of λ	(a) $\frac{1}{2}$ (b) $\frac{49}{101}$
	(b) All except one value of λ	2 101
	(c) All except two values of λ	50 51
	(d) No value of λ	(c) $\frac{50}{101}$ (d) $\frac{51}{101}$
27	NIMCET-2012	
37.	11	NIMCET-2012 46. The equation $(\cos p - 1) x^2 + (\cos p) x + \sin p = 0$ where
	that $a \le x_i \le b$, where x_i denotes the value of X in the	x is a variable has real roots. Then the interval of p is
	i^{th} case for $i = 1, 2, 3,$ n, then	(a) $(0, 2\pi)$ (b) $(-\pi, 0)$
	(a) $(b-a)^2 \ge Var(x)$ (b) $(a^2/4) \le Var(x)$	$(a) (0,2h) \qquad (b) (-h,0)$
	(c) $a^2 \le Var(x) \le b^2$ (d) $a \le Var(x) \le b$ A NIMCET-2012	(c) $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ (d) $(0, \pi)$
38.	If ω is the cube root of unity, then the system of	NIMCET-2012
	equations $x + \omega^2 y + \omega z = 0$, $\omega x + y + \omega^2 z = 0$, $\omega^2 x + \omega y$	47. Number of real roots of $3x^5 + 15x - 8 = 0$ is
	+z = 0 is	(a) 3 (b) 5
	(a) Consistent and has unique solution	(c) 1 (d) 0 C
	(b) Consistent and has more than one solution(c) Inconsistent	NIMCET-2012
	(d) None of these B	48. The value of k for which the set of equations
	NIMCET-2012	3x + ky - 2z = 0, $x + ky + 3z = 0$ and $2x + 3y - 4z = 0$ has
39	If $x = log_a bc$, $y = log_b ca$, and $z = log_c ab$, then	a non-trivial solution, is
37.		15 17
	$\frac{1}{1+x} + \frac{1}{1+y} + \frac{1}{1+z} =$	(a) $\frac{15}{2}$ (b) $\frac{17}{2}$
	1+x $1+y$ $1+z$	
	(a) abc (b) $\sqrt{ab} + \sqrt{bc} + \sqrt{ca}$	(c) $\frac{31}{2}$ (d) $\frac{33}{2}$
		(d) 2
	(c) 1 (d) $x + y + z$ C NIMCET-2012	NIMCET-2012
40	If $2^a = 3^b = 6^{-c}$ then $ab + bc + ca =$	49. If $x = log_3 5$, $y = log_{17} 25$, then which one of the following
40.	(a) 1 (b) 2	is correct?
	(c) 0 (d) None of these C	(a) $x > y$ (b) $x < y$ (c) $x \le y$ (d) $x = y$. A
	NIMCET-2012	[1 1]
41.	If e and e' be the eccentricities of a hyperbola and its	50. If $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, then A^n for any natural number n is:
	conjugate, then $\frac{1}{e^2} + \frac{1}{e^{2}} =$	[1]
		$ \begin{array}{ccc} (a) \begin{bmatrix} n & n \\ 0 & n \end{bmatrix} & (b) \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} $
	(a) 0 (b) 1	$\begin{bmatrix} a & b & b & b & b & b & b & b & b & b &$
	(c) 2 (d) None of these B NIMCET-2012	Γ1 07
12	If a fair coin is tossed n times, then the probability that	$ (c) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} $ (d) None of these. B
72.	the head comes odd number of times is	$\begin{bmatrix} 0 & 1 \end{bmatrix}$
	(a) 1/2 (b) 1/2 ⁿ	ANALYTICALABILITY AND LOGICAL REASONING
	(c) $1/2^{n-1}$ (d) None of these A	
	NIMCET-2012	51. In ROAST is coded as PQYUR in a certain language,
43.	If $\sin (\pi \cos \theta) = \cos (\pi \sin \theta)$, then $\sin 2\theta =$	then SLOPPY is codded in that language as:
		(a) MRNAQN (b) NRMNQA
	(a) $\pm \frac{3}{4}$ (b) $\pm \frac{1}{3}$ (c) $\pm \frac{1}{4}$ (d) $\pm \frac{4}{3}$ D	(c) QNMRNA (d) RANNMQ. C
		52. If Lelibroon means yellow hat, plakafroti means flower
	NIMCET-2012	graden and frotimix means garden salad, then which
44.	In which of the following regual polygons, the number	word could mean "yellow flower"?
	of diagonals is equal to number of sides?	(a) Lelifroti (b) Lelipleka
	(a) Pentagon (b) Square	(c) Plekabroon (d) Frontibroon. B

(c) Octagon

(b) Square (c) Plekabroon (d) Frontibroon. B
(d) Hexagon A
NIMCET-2012 (c) Plekabroon (d) Frontibroon. B
53. If +is *, -is +, *is / and / is -, then 6* - 9* + 8/3 ? 20 is:
(a) -2 (b) 6 (c) 10 (d) 12. C

55.	(a) Saturday (c) Thursday The letters P, Q, R, S, T, U	(b) Sunday (d) Tuesda Jand V not ne	ıy.	B n that	do one housekeepingtask mopping, sweeping, laundry, vacuuming or dusting one day a week, Monday through Friday.		
	order represent seven co					es not vacuum and does not	do his task
	1. U is as much less than Q as R is greater than S. 2. V is greater than U.					the dusting and does no	ot do it on
	3. Q is the middle term.				-	ng is done on Thursday.	
	4. P is greater than S.					his task, which is not vacu	uming, on
	Then the sequence of let	ters from the	lowest val	lue of	Wednesday.	,	
	the highest value is:				•	y is done on Friday and not	bv Uma.
	(a) TVPQRSU	(b) TRSQU	PV			s his task on Monday.	,
	(c) TUSQRPV	(d) TVPQS	RU.	C 6	•	by Terry on Wednesday is	:
56.	The minimum number o	f tiles of size 1	6 by 24 re	uired	(a) Vacuuming		
	to form a square by pl	acing them a	djacent to	one	(c) Mopping	(d) Sweeping.	D
	another is:			65		ich the Vacuuming is done	is:
	(a) 6	(b) 8			(a) Friday	(b) Monday	
	(c) 11	(d) 16.		A	(c) Tuesday	(d) Wednesda	y. B
57.	Five persons K, L, M, N				6. Sally does dus		•
	dining table. K is the me				(a) Friday	(b) Monday	
	wife of O, N is the brothe		the husba	and of	(c) Tuesday	(d) Wednesda	y. C
	K, how is N related to L'			6	7. Find the odd nu	mber in the series: 2, 9, 28, 6	5, 126, 216,
	(a) Son	(b) Cousin (d) Brother		D .	344,:		
50	(c) Brother Three man A. P. C. player	` '		D	(a) 28	(b) 65	
58.	Three men A, B, C play c				(c) 126	(d) 216.	В
	has to give Rs. 2. If he wins the game he will gain Rs. 3 each from the other two losers. If A has won 3 games,				8. Average age of	students of an adult school	is 40 years.
	B loses Rs. 3, C wins Rs		_			ents whose average is 32 y	•
	games played is:	, 12, 011011 0110 0				a result the average age is	
	(a) 12 (b) 21	(c) 20	(d) 6.	A		e number of students of the s	school after
59.	If a man walks at the rate	* *		rai by		new students is:	
	only 6 min. However if h				(a) 1200	(b) 120	
	he reaches the station 6	minutes befor	autes before the arrival of (c) 360 (d) 2				. D
	the train. The distance	covered by hi	m to reac	h the		to 70 are based on the follo	
	station is:					J, V and W are sitting round the centre. Pis second to the	
60	(a) 4 (b) 7	(c) 9	(d) 5.	A	_	out of R and V, S is not the no	
60.	The missing number in t	the given serie	es is		_	hbour of U, Q is not betwee	_
	3, 6, 6, 12, 9, 12: (a) 15 (b) 18	(a) 11	(d) 12	\mathbf{c}	,	etween U and S.	,
61.	A man runs 20 m toward	(c) 11	(d) 13.			the following are not neigh	bours?
01.	m and turns right, runs 9		-		(a) RV	(b) UV	
	turns left, runs 12 m and				(c) RP	(d) QW.	
	Which direction is the m						A
	(a) North (b) South	(c) East	(d) We	est. 70	0. What is the po	osition of S?	
				A	(a) Between U	and V.	
62.	In a club there are cerrtain number of males and females.				(b) Second to t	he right of P.	
	If 5 females are absent then female strenth will be 5				(c) To the imm	ediate right of W.	
	times that of males. Num	nber of males a	ectually pr	esent	(d) Data inade	quate.	D
	is:					een a two digit number and	
	(a) 45 (b) 80	(c) 105	(d) 175		-	neat number is 4:1. If the	-
				В	_	more than the digit in ten's	place, then
63.	The missing number in t	he following s	series is		the number is:		
	6, 12, 21,, 48:	() 60	/ th	_	(a) 24	(b) 63	
	(a) 40 (b) 33	(c) 38	(d) 45.	В	(c) 36	(d) 42.	3

(d) 4.

(c)3

C

В (c) Husband (d) Grand father. 80. Instead of walking along two adjacent sides of a rectangular field, a body took a short cut along the diagonal of the field and saved a distance equal to half the longer side. The ratio of the shorter side of the rectangle to the longer side is: (a) 1/2(b) 2/3(c) 1/4(d) 3/4. D 81. Each word is parenthesis below is formed in a method. This method is used in all four examples: SNIP (NICE) PACE TEAR (EAST) FAST TRAY (RARE) FIRE POUT (OURS) CARS. Based on this method, the word in the parenthesis of CANE (?) BATS is: (a) NEAT (b) CATS (d) NETS. C (c) ANTS 82. A study of native born residents in an area of Adivasis found that two-thirds of the children developed considerable levels of nearsightedness after starting school, while their illiterate parents and grandparents, who had no oppurtunity for formal schooling, showed no signs of ths disability. If the above statements are true, which of the following conclusions is most strongly supported by them? (a) Only people who have the opportunity for formal schooling develop nearsightedness. (b) People who are illiterate do not suffer from nearsightedness. (c) The near sightedness in the children is caused by the visual stress required by reading and other class work. (d) Only literate people are nearsighted. C Questions 83 to 85 are based on the following: A causes B or C, but not both Foccurs only if Boccurs. Doccurs if B or C occurs. E occurs only if C occurs Joccurs only if E or F occurs. D causes G or H or both. Hoccurs if E occurs. G occurs if F occurs. 83. If A occurs, which may occur? III. D I. Fannd G II. E and H (a) I only. (b) II only. (c) I and III or II and III, but not both. (d) I, II and III. C 84. If B occurs, which must occur? (a) D (b) G (c) H (d) J. Α 85. If J occurs, which must have occured? (a) Both E and F (b) Either B or C (c) Both B and C (d) None of these.

	(a) $(x - z)^2$ y is even (b) $(x - z)$	y ² is odd		(a) Wars; viciousness	(b) Catastrophes; il	l-will
	(c) $(x - z)y$ is odd (d) $(x - y)$	² z is even. A		(c) Atrocities; developme	ent (d) Triumphs; civili	zation.
87.	Pointing to a man in the photograph a	lady said. "The				\mathbf{C}
	father of his brother is the only son	of my mother."	99.	Fill in the blanks with th	e correct form of tense	
	How is this man in photograph relate	ed to the lady?		The thiefbefore	the police came :	
	(a) Brother (b) Son			(a) Escaped	(b) Had escaped	
	(c) Grandson (d) Nephe	ew. D		(c) Will escape	(d) Has been escap	ed.
	Questions 88 to 90 are based on the	following:		()	. , , , , ,	В
	Six boys A, B, C, D, E and F are ma	rching in a line.	100.	Fill in the blank with app	propriate words given.	
	They are arranged according to thier h	eights, the tallest		Anne had to pay for e		usual.
	being at the back and the shortest i			Peterhis wallet at		,
	between B and A, E is shorter than D	but taller than C		(a) had left	(b) was leaving	
	who is taller than A, E and F have tw	vo boys between		(c) left	(d) leave.	A
	them. A is not the shortest among the	em.	101	Pick the synonym of the	` '	
88.	Where is E?		101.	(a) helpful	(b) abundant	
	(a) Between A and B (b) Between	en C and A		(c) essential	(d) limited.	D
	(c) Between D and C (d) In from	nt of C. C	102	Choose the words that	` '	
89.	If we start counting from the shorte	st, which boy is	102.	the given idiom - Mid Sl	-	ing or
	fourth in the line?	-		(a) Giving pain.	inging.	
	(a) E (b) A (c) D	(d) C. D		(b) Abusing someone.		
90.	Who is next to the shortest?			(c) Laying blame.		
	(a) C (b) B (c) E	(d) F. D		(d) Damaging the reputa	tion	D
			102	For a word, four spellings		_
	GENERALENGLISH		103.		s are given. Choose the	correct
	In questions 91 to 97, fill in the bla	nk with correct		one:	(h)1:	
	option to make a proper sentece:			(a) cieling	(b) cealing	C
91.	And how for this evening's m	ain headline,	104	(c) ceiling	(d) ceeling.	C
	Britainanother Olympic gold me		104.	Choose the wrongly spe		
	(a) Had won (b) Wins			(a) Believe	(b) Relieve	-
	(c) Won (d) Has w	von B	405	(c) Grieve	(d) Decieve.	. D
92.	If sheabout his financial situa	tion, she would	105.	rase that is most sim	ılar ın	
	have helped him out:			meaning to the word - PC		
	(a) knew (b) had be	een knowing		(a) black	(b) magnetic	_
	(c) had known (d) have l	known. C	40.4	(c) grimace	(d) controversial.	D
93.	I am sure she can teach computers	as well. She's	106.	Pick the antonym of the		
	notnew to the subject:			(a) bold	(b) lazy	
	(a) All together (b) Altog	ether		(c) calm	(d) slow.	Α
	(c) Alltogether (d) Toget	her. C	107.	Pick the part of the sent		•
94.	You are trying to drag mea co	ontroversy:		would have come to me		you:
	(a) in (b) into (c) from	(d) for. B		(a) If you would have	(b) Come to me	
95.	The peopleyou socialise are call	ed friends:		(c) I would have	(d) Helped you.	Α
	(a) with whom (b) who		108.	Choose the word or phra		pposite
	(c) with who (d) whom	. A		in meaning to the word E		
96.	to school yesterday?			(a) Reputable	(b) Inherent	
		ou walked		(c) Ambitious	(d) Cursory.	В
	(c) Do you walk (d) Have	you walked	109.	Select the alternative g	•	ning of
		A		the idiom - To eat a hum	ble pie :	
97.	There was noin the railway c	ompartment for		(a) To become a vegetar	ian.	
	additional passengers:			(b) Disinfecting everywl	nere.	
	(a) space (b) place			(c) To fill one's belly.		
	(c) seat (d) room.	C		(d) To say you are sorry	for a mistake thay you	made.
98.	The sentence below has 2 blanks. F	ill in the blanks			·	D
	picking the appropriate pair of word	s from the ones	110.	Pick the antonym of the	word FABRICATE:	
	given below that best completes the			(a) Construct	(b) Weaken	
	sentence. The most technologic			(c) Dismantle	(d) Evolve.	C

	(a) $(195\ 084)_{10}$.		
	(a) (193 004) ₁₀ . (b) (001011111010 0000110	0) .	
	(c) both (a) and (b).	~ ₂ ·	
	(d) none of these.		В
112.	The decimal equivalent of o	octal number 111 010	is:
	(a) 81 (b) 72	(-)	В
113.	An I/O processor control	s the flow of inform	ation
	between:	4	
	(a) cache memory and I/O(b) main memory and I/O		
	(c) two I/O devices.	evices.	
	(d) cache and main memori	es	В
114	Which of following device		
11	taking the backup of the da	•	110 111
	(a) Magnetic Disk	(b) Pen Drive	
	(c)CD	(d) Magnetic Tape.	C
115.	ROM is a kind of:	., .	
	(a) primary memory	(b) cache memory	
	(c) removable memory	(d) secondary memo	ory.
	•	•	A
116.	The errors that can be poir	ited out by compilers	are:
	(a) Syntax	(b) Semantic errors	
	(c) Logical errors	(d) Internal errors.	A
117.	Let $x = 11111010 \text{ day } y =$	00001010 be two 8-b	it 2's
	complement numbers. Their	r product in 2's comple	ment
	notation is:		
	(a) 11000100	(b) 10011100	
	(c) 10100101	(d) 11010101.	A
118.	The range of numbers tha		
	negative numbers are store is:	ed in 2's complement	iorm
	(a) -128 to +128	(b) -128 to +127	
	(c) -128 to $+128$	(d) -128 to $+127$	В
110	Primary storage isas		_
11).	memory:	s compared to secon	idai y
	(a) slow and expensive	(b) fast and inexpens	sive
	(c) fast and expensive	(d) slow and inexpen	
	1	1	C
120.	Which of the following un	it is used to supervise	each
	instruction in the CUP?	1	
	(a) Control Unit	(b) Accumulator	
	(c) ALU	(d) Control Register.	A