	$a^2x^2 + 2h(a+b)xy$	b_{y}^{*}					
	(a) equally inclined			(a) 0	(b) 1		
	(b) perpendicular			(c) 3	(d) 4		
	(c) bisector of the angle			If D is the set of all real x such that $1 - e^{(1/x) - 1}$			
	(d) None of the above			is positive, then I			
		from $A = \{1, 2, 3, 4\}$ to		(a) (−∞, 1]	(b) (−∞, 0)		
	$B = \{1, 3, 5\}$ such that	t $(a, b) \in R \Leftrightarrow a < b$, then		(c) (1, ∞)	(d) $(-\infty, 0) \cup (1, \infty)$		
	ROR ⁻¹ is		11	Find the value of	the limit $\lim_{x \to \infty} \frac{\sqrt{1 - \cos x}}{x}$.		
		(3), (2, 5), (3, 5), (4, 5)	11.	This the value of	$x \to 0 x$		
	(c) {(3, 3), (3, 5), (5	(2), (5, 2), (5, 3), (5, 4)		(a) 0	(b) 1		
	(d) {(3, 3), (3, 4), (4			(c) √2	(d) does not exist		
	If $x + iy = (1 - i\sqrt{3})^1$			$x^{2} + x^{2}$	4 .		
5.			12.	Evaluate $\int \frac{x^2 + x}{x^4 + 1}$	$\frac{1}{6}$ dx.		
	(a) $(2^{99}, 2^{99}\sqrt{3})$						
	(c) $(-2^{99}, 2^{99}\sqrt{3})$	(d) None of these		(a) $\frac{1}{2\sqrt{2}} \tan^{-1}\left(\frac{x}{2}\right)$	$\frac{c^2 - 4}{c^2} + C$		
1 .	For a GP, $a_n = 3(2)$	2^n), $\forall n \in N$. Find the					
	common ratio.			(b) $\frac{1}{2\sqrt{2}} \tan^{-1} \left(\frac{3}{2} \right)$	$(x^2 - 4) + C$		
	(a) 2	(b) 1/2		$\frac{1}{2\sqrt{2}}$ $\frac{1}{2\sqrt{2}}$	$2\sqrt{2}$		
	(c) 3	(d) 1/3		1 .()	$(2^{2}-4)$		
_	10 1 I I I I I I I I I I I I I I I I I I	a b c		(c) $\frac{1}{2\sqrt{2}} \tan^{-1} \left(\frac{2}{\sqrt{2}} \right)$	+C		
5.	If a, b, c are in HP, then $\frac{a}{b+c}$, $\frac{b}{c+a}$, $\frac{c}{a+b}$			(
	will be in			(d) None of the a			
	(a) AP	(b) GP	13.	Evaluate $\int_{\pi/4}^{3\pi/4} \frac{1}{1}$	$-\frac{1}{dx}$		
	(c) HP	(d) None of these		$J_{\pi/4}$ 1	$+\cos x$		
				(a) 2	(b) – 2		
5.	$ If \frac{x^2 + 2x + 7}{2x + 3} < 6, x $	$r \in R$, then		(c) 1/2	(d) - 1/2		
			14.		two GM p and q are inserted		
	(a) $x > 11$ or $x < -\frac{3}{2}$				ven numbers, then find the		
	(b) $x > 11$ or $x < -1$			value of $\frac{p^2}{q} + \frac{q^2}{p}$			
	-			q p			
	(c) $-\frac{3}{2} < x < -1$			(a) A	(b) 2A		
	(d) $-1 < x < 11$ or x	3		(c) 3A	(d) 4A		
		2	15.	If the roots of the	e equation $x^2 + ax + b = 0$ are		
7.	The number of ways of painting the faces of a			c and d , then one	of the roots of the equation		
	cube of six different				$c^2 + ac + b = 0$ is		
	(a) 1	(b) 6	11	(a) c	(b) $d - c$		
	(c) 6!	(d) 36		(c) 2d	(d) 2c		
8.	A line passes th	rough (2, 2) and is	16		e coefficients of $(6a - 5b)^n$,		
	perpendicular to the line $3x + y = 3$. What is			where <i>n</i> is a positive integer, is			
	its y-intercept?			(a) 1	(b) - 1		
	(a) 1/3	(b) 2/3		(c) 2^n	(d) 2^{n-1}		
	(c) 1	(d) 4/3					

17.	Find the value of (7.995) ^{1/3} correct to four decimal places.	24.	If α , β and γ are the roots of $x^3 + ax^2 + b = 0$,
Phys	(a) 1.9995 (b) 1.9996	5110	then the value of $\beta \gamma \alpha$ is
18.	(c) 1.9990 (d) 1.9991 The values of constants <i>a</i> and <i>b</i> so that $\lim_{x \to \infty} \left(\frac{x^2 + 1}{x + 1} - ax - b \right) = 0 \text{ are}$		$ \begin{vmatrix} \gamma & \alpha & \beta \end{vmatrix} $ (a) - a ³ (b) a ³ - 3b (c) a ³ (d) a ² - 3b
開かったの	(a) $a = 0, b = 0$ (b) $a = 1, b = -1$ (c) $a = -1, b = 1$ (d) $a = 2, b = -1$ The projection of the vector $\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ on the vector $4\mathbf{i} - 4\mathbf{j} + 7\mathbf{k}$ is (a) $\frac{5\sqrt{6}}{10}$ (b) $\frac{19}{9}$ (c) $\frac{9}{19}$ (d) $\frac{\sqrt{6}}{19}$ If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are three non-zero vectors such that $\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$ and $m = \mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a}$,		If the axes are shifted to the point $(1, -2)$ without solution, then the equation $2x^2 + y^2 - 4x + 4y = 0$ becomes (a) $2X^2 + 3Y^2 = 6$ (b) $2X^2 + Y^2 = 6$ (c) $X^2 + 2Y^2 = 6$ (d) None of the above If $f(x) =\begin{cases} x^2, x \le 0\\ 2 \sin x, x > 0 \end{cases}$ then $x = 0$ is (a) point of minima (b) point of maxima (c) point of discontinuity (d) Name of the above
21.	then (a) $m < 0$ (b) $m > 0$ (c) $m = 0$ (d) $m = 3$ A line making angles 45° and 60° with the positive directions of the axes of x and y makes with the positive direction of z-axis, an	27.	 (d) None of the above In a group (G, *), then equation x * a = b has a (a) unique solution b * a⁻¹ (b) unique solution a⁻¹ * b (c) unique solution a⁻¹ * b⁻¹ (d) many solutions
22.	angle of (a) 60° (b) 120° (c) 60° or 120° (d) None of these If $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $J = \begin{bmatrix} \theta & 1 \\ -1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$, then <i>B</i> is equal to (a) $I \cos\theta + J \sin\theta$	28.	A die is rolled twice and the sum of the numbers appearing on them is observed to be 7. What is the conditional probability that the number 2 has appeared at least once? (a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (c) $\frac{2}{3}$ (d) $\frac{2}{5}$
23.	 (a) I coso + J sino (b) I sin θ + J cosθ (c) I cosθ - J sin θ (d) - I cosθ + J sin θ Which of the following is correct? (a) Determinant is a square matrix (b) Determinant is a number associated to a matrix (c) Determinant is a number associated to a square matrix (d) All of the above 		The locus of the mid-points of the focal chord of the parabola $y^2 = 4ax$ is (a) $y^2 = a(x - a)$ (b) $y^2 = 2a(x - a)$ (c) $y^2 = 4a(x - a)$ (d) None of these Find the value of sin 12° sin 48° sin 54°. (a) $\frac{1}{2}$ (b) $\frac{1}{4}$ (c) $\frac{1}{6}$ (d) $\frac{1}{8}$

31. In an equilateral triangle, the inradius circumradius and one of the exradit are in the shere $\frac{1}{200}$ w.com/ (b) $\frac{1}{3e^2}$ (d) $\frac{1}{a^2}$ (c) $\frac{2}{3e^2}$ ratio

- (a) 2:3:5
- (b) 1:2:3
- (c) 1:3:7
- (d) 3:7:9
- **32.** Let *p* and *q* be two statements. Then, $p \lor q$ is false, if
 - (a) p is false and q is true
 - (b) both p and q are false
 - (c) both p and q are true
 - (d) None of the above
- 33. In how many ways 6 letters be posted in 5 different letter boxes?

(a) 5^6	(b) 6^5			
(c) 5!	(d) 6!			

- 34. If A and B be two sets such that $A \times B$ consists of 6 elements. If three elements $A \times B$ are (1, 4), (2, 6) and (3, 6), find $B \times A$. (a) $\{(1, 4), (1, 6), (2, 4), (2, 6), (3, 4), (3, 6)\}$ (b) $\{(4, 1), (4, 2), (4, 3), (6, 1), (6, 2), (6, 3)\}$
 - $(c) \{(4, 4), (6, 6)\}$
 - $(d) \{(4, 1), (6, 2), (6, 3)\}$

35. Let $f : R \to R$ be defined as $f(x) = x^2 + 1$, find $f^{-1}(-5)$.

- (a) $\{\phi\}$
- (b)
- $(c) \{5\}$
- $(d) \{-5, 5\}$

36. If X is a poisson variate such that P(X = 1) = P(X = 2), then P(X = 4) is equal · to

- 37. The area enclosed by y = 3x 5, y = 0, x = 3and x = 5 is
 - (a) 12 sq units
 - (b) 13 sq units
 - (c) $13\frac{1}{2}$ sq units
 - (d) 14 sq units

38. The order and degree of the differential $\left(1+4\frac{dy}{dx}\right)^{2/3} = 4\frac{d^2y}{dx^2}$ are equation

respectively

(a) 1, $\frac{2}{3}$	(b) 3, 2
(c) 2, 3	(d) 2, 2

- 39. The solution of the differential equation $\frac{dy}{dx} = (4x + y + 1)^2$, is (a) $(4x + y + 1) = \tan(2x + C)$ (b) $(4x + y + 1)^2 = 2 \tan (2x + C)$ (c) $(4x + y + 1)^3 = 3 \tan (2x + C)$ (d) $(4x + y + 1) = 2 \tan (2x + C)$
- 40. The system of equations 2x + y 5 = 0, 2x - 14y - a = 0, x - 2y + 1 = 0, is consistent. Then, a is equal to (b) 2
 - (a) 1
 - (d) None of these (c) 5

1. a	2. c	3. c	4. a	5. c	6. d	7. a	8. d	9. b	10. d
11. d	12. a	13. a	14. b	15. b	16. a	17. b	18. b	19. b	20. a
21. a	22. a	23. c	24. c	25. b	26. a	27. a	28. b	29. b	30. d
31. b	32. b	33. a	34. b	35. b	36. с	37. d	38. с	39. d	40. d

Answer Key