COLLEGEDUNIA

1. If a, b, c are in GP, then $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in
(A) $A P$
(B) GP
(C) HP
(D) none of these
2. The sum to infinity of the series $1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+\cdots$ is
(A) $\frac{35}{16}$
(B) $\frac{11}{8}$
(C) $\frac{39}{35}$
(D) $\frac{7}{8}$
3. The set $B-A$ is a subset of \qquad
a) \bar{A}
b) \bar{B}
c) $A \cap B$
d) Null set
4. The converse of the statement "if $3+3=6$, then I am the president of USA "
(A) If $3+3 \neq 6$, then I am the president of USA
(B) If $3+3=6$, then I am not the president of USA
(C) If I am the president of USA, then $3+3=6$
(D) If $3+3=6$, then I am not the president of USA
5. The number of elements present in $\{1,2,3,1,2\}$
(A) 3
(B) 5
(C) 4
(D) 2
6. The relation R defined on the set $X=\{4,5,6\}$ by $R=\{(4,4),(5,5),(6,6)\}$ is
(A) reflexive
(B) not symmetric
(C) not transitive
(D) identity
7. If $A \subset B, B \subset C$ then
(A) $A \cup C=A$
(B) $A \cap C=C$
(C) $A \cap C=A$
(D) none of these
8. The range of the function $f(x)=\frac{2 x^{2}}{1+x^{2}}$ is
(A) $0 \leq x<1$
(B) $0<x<1$
(C) $0 \leq x<\frac{1}{2}$
(D) $0 \leq x<2$
9. If $x, y \in \mathbb{R}, 2 x y$ rational, y irrational, and x rational, then
(A) $x>0$
(B) $x=0$
(C) $x<0$
(D) $x \neq 0$
10. If $5+(a+i b)=8+5 i$, then
(A) $a=3, b=5$
(B) $a=8, b=5$
(C) $a=5, b=5$
(D) $a=8, b=8$
11. A square root of $3+4 i$ is
(A) $\sqrt{3}+i$
(B) $2+i$
(C) $-2+i$
(D) none of these
12. The number of 3 digits can be formed by using the digit 1 to 7 (if repetition) of digits is not allowed is

COLLEGEDUNIA

(A) 3^{7}
(B) 7^{3}
(C) 60
(D) 210
13. A group consists of 5 girls and 6 boys. The number of ways a team of 4 members be selected with no girl in the team is
(A) 30
(B) 15
(C) 10
(D) None of these
14. If the coefficient of a in $\left(a^{2}+\frac{m}{a}\right)^{5}$ is 270 , then the value of m is
(A) 3
(B) 4
(C) 5
(D) none of these
15. If ${ }^{8} C_{n}-{ }^{7} C_{3}={ }^{7} C_{2}$, then n is equal to
(A) 8
(B) 4
(C) 3
(D) 6
16. If x is real, then the maximum value of $6+4 x-x^{2}$ is
(A) 6
(B) 7
(C) 10
(D) 9
17. The quadratic equation with rational coefficients one of whose root is $\frac{1}{1+\sqrt{2}}$ is
(A) $x^{2}-2 x+1=0$
(B) $x^{2}+2 x-1=0$
(C) $x^{2}-2 x-1=0$
(D) none of these
18. If $x^{2}-5 x+4>0$, then lix lies in
(A) $(-\infty, 1) \cup(4, \infty)$
(B) $[1,4]$
(C) $(1,4)$
($[0$) none of these
19. Let $\vec{a}=\hat{\imath}+\hat{\jmath}+p \hat{k}$ and: $\vec{b}=\hat{\imath}+\hat{\jmath}+\hat{k}$. Then $|\vec{a}+|\vec{b}|:|=|\vec{a}|+|\vec{b}|$, holds for
(A) all real p
(B) nodreal p
(C) $p=-1$
(D) $p=1$
20. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}|=3$ and $|\vec{a}|=\frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angle between \vec{a} and \vec{b} is
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{2}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{4}$
21. The binary equivalent of 16 is
(A) 11100
(B) 10100
(C) 11010
(D) 10000
22. If $3,3, \sqrt{3}$ are the sides of a triangle, then angles of the triangle are
(A) $\frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{2}$
(B) $\frac{2 \pi}{9}, \frac{2 \pi}{9}, \frac{5 \pi}{9}$
(C) $\frac{\pi}{6}, \frac{\pi}{6}, \frac{2 \pi}{3}$
(D) none of these
23. $\cos ^{-1} \frac{1}{2}+2 \sin ^{-1} \frac{1}{2}$ is equal to
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{6}$
(C) $\frac{\pi}{3}$
(D) $\frac{2 \pi}{3}$
24. The equation $\sin x+\cos x=1$ has
(A) infinite number of solutions
(B) two solutions
(C) only one solution
(D) no solution
25. Domain of $\tan x$ is
(A) \mathbb{R}
(B) $x \in \mathbb{R}$, and $x \neq\left(n+\frac{1}{2}\right) \pi, n \in \mathrm{I}$
(C) $x \in \mathbb{R}, x \neq n \pi, n \in \mathrm{I}$
(D) none of these
26. If the matrix product of two (3×3) matrix $A B=0$, then
(A) $A=0$ or $B=0$
(B) $A=0$ and $B=0$
(C) it is not necessary that either $A=0$ or $B=0$
(D) all statements are wrong
27. The system of linear equations:
$x+y+z=0,2 x+y-z=0,3 x+2 y+z=0$ has
(A) no solution
(B) a unique solutions
(C) an infinitely many solutions
(D) none of these
28. If the value of a third order determinant is 7 then the value of the determinant formed by its cofactors is
(A) 49
(B) 7
(C) 7^{3}
(D) 7^{4}
29. The value of the determinant $\left|\begin{array}{ccc}0 & a-b & a-c \\ b-a & 0 & b-c \\ c-a & c-b & 0\end{array}\right|$ is
(A) $a+b+c$
(B) $a b+b c+c a$
(C) $a b c$
(D) 0
30. If the value of mode and mean is 30 and 33 respectively, then the valued of median is
(A) 30
(B) 32
(C) 34
(D) none of these
31. In a family, there are 6 men, 4 women and 5 children whose ages separately are respectively 30,25 and 5 years. Then mean age of the family is
(A) $20 \frac{1}{3}$
(B) $18 \frac{1}{3}$
(C) $21 \frac{1}{3}$
(D) none of these
32. A room has 3 lamps. From a collection of 8 light bulbs of which 5 are not good, any person selects 3 at random and puts them in the socket, then the probability that he will have light, is
(A) $\frac{13}{28}$
(B) $\frac{5}{28}$
(C) $\frac{23}{28}$
(D) none of these
33. 5 boys and 5 girls sit in a row randomly. The probability that all 5 girls sit together is
(A) $\frac{1}{2}$
(B) $\frac{1}{42}$
(C) $\frac{1}{21}$
(D) none of these
34. The points $(3,3),(h, 0)$ and $(0, k)$ are collinear if
(A) $\frac{1}{h}+\frac{1}{k}=\frac{1}{3}$
(B) $\frac{1}{h}-\frac{1}{k}=\frac{1}{3}$
(C) $\frac{1}{k}-\frac{1}{h}=3$
(D) none of these
35. The equation $\sqrt{(x-2)^{2}+y^{2}}-\sqrt{(x+2)^{2}+y^{2}}=4$ represents
(A) a parabola
(B) a hyperbola
(C) a circle
(D) a pair of lines
36. The circle $x^{2}+y^{2}-8 x+4 y+4=0$ touches
(A) x-axis
(B) both axes
(C) y-axis
(D) neither x-axis nor y-axis
37. The value of α for which the line $x+y+2=0$ touches the parabola $y^{2}=\alpha x$ is
(A) -8
(B) -4
(C) 4
(D) 8

COLLEGEDUNIA

38. If the latus rectum of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, is equal to half of its minor axis, then the eccentricity of the ellipse is
(A) $\frac{1}{\sqrt{2}}$
(B) $\frac{\sqrt{3}}{2}$
(C) $\frac{1}{2}$
(D) none of these
39. If the line $2 x+\sqrt{6} y=2$ is a tangent to the curve $x^{2}-2 y^{2}=4$. Then the point of contact is
(A) $(\sqrt{6}, 1)$
(B) $(7,-2 \sqrt{6})$
(C) $(2,3)$
(D) $(4,-\sqrt{6})$
40. The projection of the line segment joining the points $(-1,0,3)$ and $(2,5,1)$ on the line whose direction of ratios are $6,2,3$ is
(A) $\frac{15}{7}$
(B) $\frac{9}{7}$
(C) $\frac{22}{7}$
(D) $\frac{13}{7}$
41. The co-ordinate of the point of intersection of the line $\frac{x+1}{1}=\frac{y+3}{2}=\frac{z-2}{-2} \quad$ with the plane $x+2 y+3 z=5$ is
(A) $(0,1,1)$
(B) $(-7,-15,14)$
(C) $(2,0,1)$
(D) $(-8,5,1)$
42. The perpendicular distance of the point $(1,2,3)$ from the line $\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$ is
(A) 7
(B) 5
(C) 4
(D) 8
43. The shortest distance of the point $(1,2,-1)$ to the surface of the sphere $x^{2}+y^{2}+z^{2}=54$ is
(A) $3 \sqrt{6}$
(B) $2 \sqrt{ } \overline{6}$
(C) $\sqrt{6}$
(D) 2
44. The order of the differential equation $\frac{d^{3} y}{d x^{3}}+x\left(\frac{d y}{d x}\right)^{4}=4 \ln x$ is
(A) 1
(B) 4
(C) 3
(D) none of these
45. The general solution of $\frac{d^{2} y}{d x^{2}}=e^{-x}$ is
(A) $e^{-x}+c x+d$
(B) e^{-x}
(C) $e^{-x}+c x^{2}+d$
(D) none of these
46. The solution of $\frac{d y}{d x}=3^{y-x}$ is
(A) $3^{x}+3^{y}=k$
(B) $3^{x}-3^{y+1}=k$
(C) $\frac{1}{3^{x}}+\frac{1}{3^{y}}=k$
(D) $\frac{1}{3^{x}}-\frac{1}{3^{y}}=k$
47. The slope of the normal to the curve $y=3 e^{x^{2}}+4 \sin x$ at $x=0$ is
(A) 4
(B) $\frac{1}{4}$
(C) -4
(D) $-\frac{1}{4}$
48. If $z=\sin ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$, then $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}$ is equal to
(A) 0
(B) Z
(C) $\sin Z$
(D) $\tan z$
49. $\frac{d^{8}}{d x^{8}} \sin (2 x+3)$ is equal to

COLLEGEDUNIA

(A) $2^{8} \cos (2 x+3)$
(B) $2^{8} \sin (2 x+3)$
(C) $2^{7} \cos (2 x+3)$
(D) $2^{7} \sin (2 x+3)$
50. $\lim _{x \rightarrow 0} \frac{\cos 2 x-\cos 5 x}{1-\cos 3 x}$ is equal to
(A) $\frac{7}{3}$
(B) $\frac{3}{7}$
(C) $\frac{2}{5}$
(D) 0
51. The function $f(x)=\left\{\begin{array}{ll}\frac{\sin x}{x} & , x \neq 0 \\ a & , x=0\end{array}\right.$ is continuous at $x=0$ if a is
(A) 0
(B) -1
(C) 1
(D) none of these
52. The derivative of $|x-3|$ at $x=2$ is
(A) -1
(B) 0
(C) 1
(D) not defined
53. Derivative of $\sin 2 x$ w.r.t. $\cos 2 x$
(A) $2 \tan 2 x$
(B) $-\cot 2 x$
(C) $2 \cot 2 x$
(D) $-\tan 2 x$
54. The interval in which $y=x^{2} e^{-x}$ is increasing is
(A) $(-\infty, \infty)$
(B) $(-2,0)$
(C) $(2, \infty)$
(D) $(0,2)$
55. $\frac{d}{d x} \ln |\sec x+\tan x|$ is
(A) $\sec x$
(B) $\tan x$
(C) $\sec x+\tan x$
(D) $\sec x-\tan x$
56. Area bounded by the curve $y=x^{2}$ and the line $y=1$ is
(A) 1
(B) $\frac{3}{4}$
(C) $\frac{4}{3}$
(D) $\frac{16}{3}$
57. $\int_{-2}^{2}\left(\alpha x^{3}+\beta x\right) d x=0$ for
(A) $\alpha>0$ and $\beta>0$
(B) for any value of α, β
(C) $\alpha>0$ and $\beta<0$
(D) $\alpha<0$ and $\beta<0$ only
58. $\int \frac{\tan (\ln x)}{x} d x$ is equal to
(A) $\ln |\sec (\ln x)|+C$
(B) $\ln |\cos (\ln \mathrm{x})|+C$
(C) $\ln |\sin (\ln x)|+C$
(D) none of these
59. $\int \frac{\left(1+x+x^{2}\right)}{1+x^{2}} e^{\tan ^{-1} x} d x$ is equal to
(A) $x^{2} e^{\tan ^{-1} x}+C$
(B) $e^{\tan ^{-1} x}+C$
(C) $x e^{\tan ^{-1} x}+C$
(D) none of these
60. If $f(x)=\int_{0}^{x} t^{2} \sin t d t$, then $f^{\prime}(x)$ is
(A) $2 x \sin x+\cos ^{2} x$
(B) $x^{2} \sin x+2 x \cos x$
(C) $x^{2} \cos x$
(D) $x^{2} \sin x$

COLLEGEDUNIA

Solution Keys

1. (B)	2. (A)	3. (A)	5.	6. (A)	7. (C)	8. (D)	9. (B)	10. (A)	
11. (B)	12. (D)	13. (B)	14. (A)	15. (C)	16. (C)	17. (B)	18. (A)	19. (D)	20. (D)
21. (D)	22. (C)	23. (D)	24. (A)	25. (B)	26. (C)	27. (B)	28. (A)	29. (D)	30. (B)
31. (A)	32. (C)	33. (B)	34. (A)	35. (D)	36. (C)	37. (D)	38. (B)	39. (D)	40. (C)
41. (B)	42.(A)	43. (B)	44. (C)	45. (A)	46. (D)	47. (D)	48. (D)	49. (B)	50. (A)
51. (C)	52. (A)	53. (B)	54. (D)	55. (A)	56. (C)	57. (B)	58. (A)	59. (C)	60. (D)

