

TUTE OF MATHEM *Dedicated To Disseminating Mathematical Knowledge*

CALCULUS OF VARIATION ASSIGNMENT

DECEMBER – 2014

PART - B

1. Consider the functional $(y) = y^{2}(1) + \int_{0}^{1} y'^{2}(x) dx, y(0) = 1,$ 0 $I(y) = y^2(1) + \int_0^1 y'^2(x) dx$, $y(0) =$ where $y \in C^2([0,1])$. If y extremizes J , then 1. $y(x) = 1 - \frac{1}{x^2}$ 2 $y(x) = 1 - \frac{1}{2}x^2$ 2. $y(x) = 1 - \frac{1}{2}x$ $f(x) = 1 - \frac{1}{2}$ 3. $y(x) = 1 + \frac{1}{2}x$ 2 $f(x) = 1 + \frac{1}{2}x$ 4. $y(x) = 1 + \frac{1}{2}x^2$ 2 $y(x) = 1 + \frac{1}{2}x$

PART - C

2. Let $y \in C^2([0, \pi])$ satisfying $y(0) = y(\pi) = 0$ and $\int_0^{\pi} y^2(x) dx =$ $\mathbf{0}$ $y^2(x)dx = 1$ extremize the functional

$$
J(y) = \int_0^{\pi} (y'(x))^2 dx; \ y' = \frac{dy}{dx}. \text{ Then}
$$

1. $y(x) = \sqrt{\frac{2}{\pi}} \sin x$
2. $y(x) = -\sqrt{\frac{2}{\pi}} \sin x$
3. $y(x) = \sqrt{\frac{2}{\pi}} \cos x$
4. $y(x) = -\sqrt{\frac{2}{\pi}} \cos x$

JUNE – 2015

PART - C

- **3.** The extremal of the functional $\int (y'^2-y^2)dx$ that passes through (0,0) and α $\mathbf{0}$ (α,0) has a 1. weak minimum if $\alpha < \pi$. 2. strong minimum if $\alpha < \pi$. 3. weak minimum if $α > π$. 4. strong minimum if $\alpha > \pi$. **4.** The extremal of the functional $I = \int_0^4 y^2 (y')^2$ 0 *x* $I = y^2(y')^2 dx$ that passes through $(0,0)$ and (x_1, y_1) is 1. a constant function
	- 2. a linear function of *x*
	- 3. part of parabola
	- 4. part of an ellipse

DECEMBER – 2015

PART - B

5. The functional $I(y(x)) = \int_a^b (y^2 + y'^2 - y'^2) dx$ $I(y(x)) = \int_a^b (y^2 + y'^2 - 2y \sin x) dx$, has the following extremal with C_1 and C_2 as arbitrary constants.

1.
$$
y = C_1 e^{2x} + C_2 e^{-2x} + \frac{1}{2} \sin x
$$
.
\n2. $y = C_1 e^{x} + C_2 e^{-x} + \frac{1}{2} \sin x$.
\n3. $y = C_1 e^{x} + C_2 e^{-x} - \frac{1}{2} \sin x$.
\n4. $y = C_1 e^{2x} + C_2 e^{-2x} + \frac{1}{2} \cos x$.

PART - C

- **6.** To show the existence of a minimizer for the functional $J[y] = \int_a^b f(x, y, y')$ $J[y] = \int_a^b f(x, y, y') dx$, for which there is a minimizing sequence (φ_n) , it is enough to have
	- 1. (φ_n) is convergent and J is continuous.
	- 2. (φ_n) is convergent and J is differentiable.
	- 3. (φ_n) has a convergent subsequence and J is continuous.
	- 4. (φ_n) has a convergent subsequence and J is differentiable.

JUNE – 2016

PART – B

7. The curve of fixed length l, that joins the points (0,0) and (1,0), lies above the x-axis, and encloses the maximum area between itself and the x-axis, is a segment of 1. a straight line. 2. a parabola 3. an ellipse 4. a circle

PART - C

8. Let $y = y(x)$ be the extremal of the functional $[y(x)] = \int_{0}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx,$ $d[y(x)] = \int_{0}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$ $\left(\frac{dy}{dx}\right)$ $=\int_{0}^{\frac{\pi}{2}}\sqrt{1+\left(\frac{dy}{dx}\right)^2}dx$, subject to the

1 *dx dx x* $\int \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$ J \setminus condition that the left end of the extremal

moves along $y = x^2$, while the right end moves along $x - y = 5$, Then the

MOHAN INSTITUTE OF MATHEMAT *Dedicated To Disseminating Mathematical Knowledge*

1. shortest distance between the parabola and the straight line is $\left(\frac{19\sqrt{2}}{8}\right)$. $19\sqrt{2}$ $\overline{}$ J λ $\overline{}$ $\overline{\mathcal{L}}$ ſ

2. slope of the extremal at
$$
(x,y)
$$
 is $\left(-\frac{3}{2}\right)$.

- 3. point $\left|\frac{3}{4},0\right|$ J $\left(\frac{3}{4},0\right)$ \setminus $\left(\frac{3}{1},0\right)$ 4 $\left(\frac{3}{2},0\right)$ lies on the extremal.
- 4. extremal is orthogonal to the curve $\frac{\pi}{2}$. $y = \frac{x}{2}$

DECEMBER – 2016

PART - B

9. If $J[y] = \int_1^2 (y'^2 + 2yy' +$ 1 $J[y] = {^{2}(y'^{2} + 2yy' + y^{2})dx}$, $y(1) = 1$ and y(2) is arbitrary then the extremal is 1. e^{x-1} 2. e^{x+1} 3. e^{1-x} 4. e^{-x-1}

PART - C

- **10.** The functional $J[y] = \int (y'^2 +$ 1 0 $J[y] = \int (y'^2 + x^2) dx$ where y(0)=-1 and y(1) = 1 on y=2 *x* -1, has 1. weak minimum 2. weak maximum 3. strong minimum 4. strong maximum
- **11.** Let $y(x)$ be a piecewise continuously differentiable function on [0,4]. Then the functional $J[y] = \int (y'-1)^2 (y'+1)^2 dy$ $J[y] = \int_{0}^{4} (y'-1)^2 (y'+1)^2 dx$ attains 0 minimum if $y = y(x)$ is 1. $y = \frac{x}{2}$ $0 \le x \le 4$ 2 $y = \frac{x}{2}$ $0 \le x \le$ 2. $\overline{\mathcal{L}}$ ↑ \int -2 $1 \le x \le$ $-x$ $0 \le x \le$ $=$ 2 $1 \leq x \leq 4$ $0 \leq x \leq 1$ $x-2$ $1 \leq x$ $x \qquad 0 \leq x$ *y* 3. $\overline{\mathcal{L}}$ ↑ \int $-x+6$ $2 \leq x \leq$ $\leq x \leq$ $=$ 6 $2 \leq x \leq 4$ 2x $0 \le x \le 2$ $x+6$ $2 \leq x$ $x \qquad 0 \leq x$ *y* 4. ⇃ \int $-x+6$ 3 \leq x \leq $\leq x \leq$ $=$ 6 $3 \leq x \leq 4$ $0 \leq x \leq 3$ $x+6$ $3 \leq x$ $x \qquad \qquad 0 \leq x$ *y*

JUNE – 2017

PART – B

12. The infimum of $\int_0^1 (u^r)$ $\mathbf 0$ $(u'(t))^2 dt$ on the class of functions

 ${u \in C^1[0,1]}$ such that $u(0) = 0$ and max $|u| = 1}$ [0,1]

is equal to 1.0 2. $1/2$ 3.1 4. 2

13. Consider the functional

$$
I(y(x)) = \int_{x_0}^{x_1} f(x, y) \sqrt{1 + y'^2} e^{\tan^{-1} y'} dx \text{ where}
$$

 $f(x,y) \neq 0$. Let the left end of the extremal be fixed at the point $A(x_0, y_0)$ and the right end $B(x_1,y_1)$ be movable along the curve $y=y(x)$. Then the extremal $y=y(x)$ intersects the curve $y=y(x)$ along which the boundary point $B(x_1,y_1)$ slides at an angle 1. $\pi/3$ 2. $\pi/2$

3.
$$
\pi/4
$$
 4. $\pi/6$

DECEMBER – 2017

PART – C

14. Let X={u∈C¹[0,1] | u(0)=0} and let I:X→ℝ be defined as $I(u) = \int (u'(t))^2$ - $I(u) = \int_0^1 (u'(t))^2 - u(t)^2 dt$. 0

Which of the following are correct?

- 1. *I* is bounded below
- 2. *I* is not bounded below
- 3. *I* attains its infimum
- 4. *I* does not attain its infimum

15. Let
$$
I : C^1[0,1] \rightarrow \mathbb{R}
$$
 be defined as

$$
I(u) = \frac{1}{2} \int_{0}^{1} (u'(t)^{2} - 4\pi^{2} u(t)^{2}) dt.
$$

Let us set (P)m = inf {I (u) : $u \in C^1[0,1]$: $u(0) = u(1) = 0$. Let $\bar{u} \in C^1[0,1]$ satisfy the Euler – Lagrange Equation associated with (P). Then 1. $m = -\infty$ i.e., I is not bounded below 2. m∈ℝ, with $I(\bar{u}) = m$ 3. m∈ℝ, with I(\bar{u}) > m

4. m∈ℝ, with I(\overline{u}) < m

 $\overline{\mathcal{L}}$

TUTE OF MATHEM *Dedicated To Disseminating Mathematical Knowledge*

JUNE - 2018

PART - B

16. Consider
$$
J[y] = \int_{0}^{1} [(y')^{2} + 2y]dx
$$
 subject
to $y(0) = 0$, $y(1) = 1$. Then inf $J[y]$
1. is $\frac{23}{12}$
2. is $\frac{21}{24}$
3. is $\frac{18}{25}$
4. does not exist

PART - C

- **17.** The extremal of the functional $=\int_0^1 y'$ 0 $J[y] = \int_{0}^{1} y'^2(x) dx$ subject to y(0)=0, y(1)= 1 and $\int_0^1 y(x) dx =$ $\int_0^1 y(x) dx = 0$ is 1. $3x^2 - 2x$ 2. $8x^3 - 9x^2 + 2x$ 3. $\frac{3}{5}x^4 - \frac{2}{5}x$ 3 2 3 $\frac{5}{3}x^4$ – $4. \frac{21}{2}x^5 + 10x^4 + 4x^3 - \frac{3}{2}x$ 2 $10x^4 + 4x^3 - \frac{5}{3}$ 2 $\frac{-21}{2}x^5 + 10x^4 + 4x^3$ –
- **18.** The admissible extremal for $[y] = \int_{0}^{\log 3} [e^{-x} y'^2 + 2e^x (y' + y)] dx,$ $\mathbf{0}$ $J[y] = \int_0^{\log 3} [e^{-x}y'^2 + 2e^x(y' + y)] dx$ where y (log 3) = 1 and y(0) is free is 1. $4 - e^{x}$ 2. $10 - e^{2x}$ 3. $e^{x} - 2$ 4. $e^{2x} - 8$

DECEMBER – 2018

PART-B

- **19.** Consider the functional
	- $=\int (1 -$ 2 0 *J*[y] = $\int (1 - y'^2)^2 dx$ defined on {y∈C[0,2]: y is piecewise C¹ and y(0)=y(2) = 0}. Let y_e be a
	- minimize of the above functional. Then y_e has 1. a unique corner point
	-
	- 2. two corner points 3. more than two corner points
	- 4. no corner points

PART-C

20. Consider the functional $J[y] = \int_0^1 [(y')^2 - (y')^2] dy$ $J[y] = \int_{0}^{1} [(y')^{2} - (y')^{4}] dx$

0 subject to $y(0)=0$, $y(1)=0$. A broken extremal is a continuous extremal whose derivative has jump discontinuities at a finite number of points. Then which of the following statements are true?

- 1. There are no broken extremals and $y = 0$ is an extremal.
- 2. There is a unique broken extremal.
- 3. There exist more than one and finitely many broken extremals.
- 4. There exist infinitely many broken extremals.

21. The extremals of the functional

 $J[y] = \int_0^1 [720x^2y - (y'')^2] dx$, subject to $\mathbf{0}$ $y(x) = y'(0) = y(1) = 0, y'(1) = 6$, are 1. $x^6 + 2x^3 - 3x^2$ 2. $x^5 + 4x^4 - 5x^3$ 3. $x^5 + x^4 - 2x^3$ 4. $x^6 + 4x^3 - 6x^2$

JUNE – 19

PART – B

22. Let x*(t) be the curve which minimizes the functional $=\int_0^1 [x^2(t)] +$ $\mathbf 0$ $J(x) = \int_{0}^{1} [x^2(t) + \dot{x}^2(t)] dt$ satisfying $x(0)=0$, $x(1) = 1$. Then the value of x^* $\frac{1}{2}$ J $\left(\frac{1}{2}\right)$ \setminus ſ 2 $x * \left(\frac{1}{2}\right)$ is 1. $\frac{1}{1+e}$ *e* $1+$ 2. $\frac{2 \times e}{1 + e}$ *e* $1+$ 2 3. $\frac{e}{1+2e}$ *e* $\frac{1}{1+2e}$ 4. $\frac{2e}{1+2e}$ *e* $1 + 2$ 2 $\overline{+}$

PART – C

23. Let B = { $(x, y) \in \mathbb{R}^2 | x^2 + y^2 \le 1$ } and C = { (x, y) } y)| $x^2 + y^2 = 1$ } and let f and g be continuous functions. Let u be the minimizer of the functional $J[v] = \iint_B (v_x^2 + v_y^2 - 2fv) dx dy + \int_C (v^2 - 2gv) ds.$ Then u is a solution of

1.
$$
-\Delta u = f, \frac{\partial u}{\partial n} + u = g
$$

2.
$$
\Delta u = f, \frac{\partial u}{\partial n} - u = g
$$

3.
$$
-\Delta u = f, \frac{\partial u}{\partial n} = g
$$

4.
$$
\Delta u = f, \frac{\partial u}{\partial n} = g
$$

n

 \widehat{o}

MOHAN INSTITUTE OF MATHEMATICS *Dedicated To Disseminating Mathematical Knowledge*

where *n u* ∂ $\frac{\partial u}{\partial x}$ denotes the directional derivative

of u in the direction of the outward drawn normal at $(x, y) \in C$

24. Consider the functional

$$
J[y] = \int_0^1 [(y'(x))^2 + (y'(x))^3] dx
$$
, subject to

- $y(0) = 1$ and $y(1) = 2$. Then
- 1. there exists an extremal $y \in C^1$ ([0, $1]$) \setminus C² ([0, 1])
- 2. there exists an extremal $y \in C$ ([0, $1]$) \setminus C¹ ([0, 1])
- 3. every extremal y belongs to C^1 ([0, 1])
- 4. every extremal y belongs to C^2 ([0, 1])

DECEMBER – 2019

PART-B

25. Let $y = \phi(x)$ be the extremizing function for the functional

$$
I(y) = \int_0^1 y^2 \left(\frac{dy}{dx}\right)^2 dx
$$
, subject to

 $y(0) = 0$, $y(1) = 1$. Then $\phi(1/4)$ is equal to $1. 1/2$ 2. $1/4$ 3. 1/8 4. 1/12

PART-C

26. Let $y = y(x) \in C^4([0, 1])$ be an extremizing function for the functional

$$
I(y) = \int_0^1 \left[\left(\frac{d^2 y}{dx^2} \right)^2 - 2y \right] dx, \quad \text{satisfying}
$$

 $y(0) = 0 = y(1)$. Then an extremal $y(x)$, satisfying the given conditions at 0 and 1 together with the natural boundary conditions, is given by

1.
$$
\frac{x}{24}(x-1)^3
$$

2.
$$
\frac{x^2}{24}(x-1)^2
$$

3.
$$
\frac{x}{24}(x^3-2x^2+1)
$$

4.
$$
\frac{x}{24}(x^3+x^2-2)
$$

27. The minimum value of the functional

$$
I(y) = \int_0^{\pi} \left(\frac{dy}{dx}\right)^2 dx,
$$

subject to $\int_0^{\pi} y^2(x) dx = 1, y(0) = 0 = y(\pi)$
is equal to
1. 1/2
2. 1
3. 2
4. 1/3

$$
\underline{\mathsf{JUNE} - 20}
$$

PART – B

28. The extremal of the functional

$$
J(y) = \int_0^1 [2(y')^2 + xy] dx, \ y(0) = 0, \ y(1)
$$

= 1, y \in C²[0, 1]
1. y = $\frac{x^2}{12} + \frac{11x}{12}$
2. y = $\frac{x^3}{3} + \frac{2x^2}{3}$
3. y = $\frac{x^2}{7} + \frac{6x}{7}$
4. y = $\frac{x^3}{24} + \frac{23x}{24}$

PART – C

29. The extremal of the functional
\n
$$
J(y) = \int_0^1 e^x \sqrt{1 + (y')^2} dx, y \in C^2[0,1]
$$
\nis of the form

1.
$$
y = \sec^{-1}\left(\frac{x}{c_1}\right) + c_2
$$
, where c_1 and c_2

are arbitrary constants

2.
$$
y = \sec^{-1}\left(\frac{x}{c_1}\right) + c_2
$$
, where $|c_1| < 1$

and c_2 is an arbitrary constant

3.
$$
y = \tan^{-1}\left(\frac{x}{c_1}\right) + c_2
$$
, where c_1 and c_2

are arbitrary constants

4.
$$
y = \tan^{-1} \left(\frac{x}{c_1} \right) + c_2
$$
, where $|c_1| > 1$
and c_2 is an arbitrary constant

30. Consider the functional

TUTE OF MATHEM

Dedicated To Disseminating Mathematical Knowledge

 $=\int_0^{\pi} ((y')^2 \mathbf{0}$ $J(y) = \int_{0}^{x} ((y')^{2} - ky^{2}) dx$ with boundary

conditions $y(0) = 0$, $y(\pi) = 0$ Which of the following statements are true?

- 1. It has a unique extremal for all $k \in \mathbb{R}$
- 2. It has atmost one extremal if \sqrt{k} is not an integer
- 3. It has infinitely many extremals if \it{k} is an integer
- 4. It has a unique extremal if \sqrt{k} is an integer

JUNE – 21

PART – B

31. Which of the following is an extremal of the functional $=\int_{-1}^{1} (y'^2 -$ 1 $J(y) = \int_{0}^{1} (y'^2 - 2xy) dx$ that satisfy the boundary conditions $y(-1) = -1$ and $y(1) =$ 1? 3 5

1.
$$
-\frac{x^3}{5} + \frac{6x}{5}
$$

2. $-\frac{x^5}{8} + \frac{9x}{8}$
3. $-\frac{x^3}{6} + \frac{7x}{6}$
4. $-\frac{x^3}{7} + \frac{8x}{7}$

PART – C

32. Let $X = \{y \in C^1[0, \pi] : y(0) = 0 = y(\pi)\}\$ and define $J: X \rightarrow \mathbb{R}$ by

> $(y) = \int_0^x y^2 (1 - y'^2) dx.$ $J(y) = \int_0^{\pi} y^2 (1 - y'^2) dx$. Which of the following statements are true?

- 1. $y = 0$ is a local minimum for J with respect to the $C¹$ norm on X
- 2. $y = 0$ is a local maximum for J with respect to the C^1 norm on X
- 3. $y = 0$ is a local minimum for J with respect to the sup norm on X
- 4. $y = 0$ is a local maximum for J with respect to the sup norm on X
- **33.** Let B be the unit ball in \mathbb{R}^3 centered at origin. The Euler-Lagrange equation corresponding to the functional

$$
I(u) = \int_B (1 + |\nabla u|^2)^{\frac{1}{2}} dx
$$
 is

1.
$$
div\left(\frac{\nabla u}{(1+|\nabla u|^2)^{\frac{1}{2}}}\right) = 0
$$

\n2. $\frac{\Delta u}{(1+|\nabla u|^2)^{\frac{1}{2}}} = 1$
\n3. $|\nabla u| = 1$
\n4. $(1+|\nabla u|^2)\Delta u = \sum_{i,j=1}^3 u_{x_i} u_{x_j} u_{x_ix_j}$

JUNE – 22

PART – B

34. What is the extremal of the functional
\n
$$
J[y] = \int_{-1}^{0} (12xy - (y')^2) dx
$$
 subject to y(0)
\n= 0 and y(-1) = 1?
\n1. $y = x^2$
\n2. $y = \frac{2x^2 + x^4}{3}$
\n3. $y = -x^3$
\n4. $y = \frac{x^2 + x^4}{4}$

PART – C

2.

35. Let $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ be two points on the xy-plane with x_1 different from x_2 and $y_1 > y_2$. Consider a curve C = ${z : z(x_1) = P_1, z(x_2) = P_2}.$ Suppose that a particle is sliding down along the curve C from the point P_1 to P_2 under the influence of gravity. Let T be the time taken to reach point P_2 and g denote the gravitational constant. Which of the following constant. Which of the following statements are true?

1.
$$
T = \int_{x_1}^{x_2} \sqrt{\frac{1 + (z'(x))^2}{2gz(x)}} dx
$$

2.
$$
T = \int_{x_1}^{x_2} \frac{\sqrt{1 + (z'(x))^2}}{2gz(x)} dx
$$

- 3. T is minimized when C is a straight line
- 4. The minimizer of T cannot be a straight line

36. Let
$$
X = \{u \in C^1[0, 1] : u(0) = u(1) = 0\}
$$
. Let
 $1 : X \to R$ defined as $I(u) = \int_0^1 e^{-u'(t)^2} dt$,

5

ITUTE OF MATHEMA *Dedicated To Disseminating Mathematical Knowledge*

for all $u \in X$. Let $M = \sup_{f \in X} I[f]$ and $m = \inf_{f \in X} I[f]$. Which of the following statements are true? 1. $M = 1$, $m = 0$ 2. $1 = M > m > 0$ 3. M is attained 4. m is attained

37. If y(t) is a stationary function of

 $=\int_{-1}^{1} (1-x^2)(y')^2 dx$, y(-1)=1, y(1) = 1 $J[y] = \int_{0}^{1} (1 - x^2)(y')^2 dx$, $y(-1) = 1$, $y(1) = 1$ subject to $\int_{-1}^{1} y^2 =$ 1 $y^2 = 1$. Which of the following statements are true? 1. y is unique

- 2. y is always a polynomial of even order
- 3. y is always a polynomial of odd order
- 4. No such y exists

JUNE – 23

PART – B

38. Consider the variational problem (P)

$$
J(y(x)) = \int_0^1 [(y')^2 - y | y | y' + xy] dx, \quad y(0) = 0, \ y(1) = 0.
$$

Which of the following statements is correct?

- (1) (P) has no stationary function (extremal).
- (2) $y = 0$ is the only stationary function (extremal) for (P).
- (3) (P) has a unique stationary function (extremal) y not identically equal to 0.
- (4) (P) has infinitely many stationary functions (extremal).

PART – C

40. Suppose y(x) is an extremal of the following functional

$$
J(y(x)) = \int_0^1 (y(x)^2 - 4y(x)y'(x) + 4y'(x)^2) dx
$$

subject to $y(0) = 1$ and $y'(0) = 1/2$.

Which of the following statements are true?

- (1) y is a convex function.
- (2) y is concave function.
- (3) $y(x_1 + x_2) = y(x_1) y(x_2)$ for all x_1, x_2 in [0, 1].
- (4) $y(x_1x_2) = y(x_1) + y(x_2)$ for all x_1, x_2 [0, 1].

DECEMBER – 23

PART – B

41. The cardinality of the set of extremals of $=\int_0^1 (y')$ $\mathbf{0}$ $J[y] = (y')^{2} dx$, subject to $(0) = 1$, $y(1) = 6$, $\int_{0}^{1} y \, dx = 3$ $y(0) = 1$, $y(1) = 6$, $\int_0^1 y \, dx =$ is $(1)0$ (2) 1 (3) 2 (4) countably infinite

PART – C

42. Among the curves connecting the points (1, 2) and (2, 8), let γ be the curve on which an extremal of the functional

$$
J[y] = \int_1^2 (1 + x^3 y') y' dx
$$

can be attained. Then which of the following points lie on the curve γ ?

(1)
$$
(\sqrt{2}, 3)
$$

\n(2) $(\sqrt{2}, 6)$
\n(3) $(\sqrt{3}, \frac{22}{3})$
\n(4) $(\sqrt{3}, \frac{23}{3})$

43. Define

 $S = \{y \in C^1[0, \pi] : y(0) = y(\pi) = 0\}$ $||f||_{\infty} = \max_{x \in [0,\pi]} |f(x)|$, for all $f \in S$ B_0 (f, ε) = {f \in S : $||f||_{\infty} < \varepsilon$ } B_1 (f, ε) = {f \in S : $||f||_{\infty} + ||f'||_{\infty} < \varepsilon$ } Consider the functional $J : S \to \mathbb{R}$ given by

$$
J[y] = \int_0^{\pi} (1 - (y')^2) y^2 dx.
$$

Then there exists $\epsilon > 0$ such that (1) J[y] \leq J[0], for all $y \in B_0$ (0, ε)

6

MOHAN INSTITUTE OF MATHEMATICS

Dedicated To Disseminating Mathematical Knowledge

7

MOHAN INSTITUTE OF MATHEMATICS

Dedicated To Disseminating Mathematical Knowledge

ANSWERS

