

COMPLEX ANALYSIS (PYPS)

DECEMBER – 2014

PART – B

- 1. Let $p(z) = a_0 + a_1 z + ... + a_n z^n$ and $q(z) = b_1 z + b_2 z^2 + ... + b_n z^n$ be complex polynomials. If a_0 , b_1 are non-zero complex numbers then the residue of p(z)/q(z) at 0 is equal to
 - 1. $\frac{a_0}{b_1}$ 2. $\frac{b_1}{a_0}$ 3. $\frac{a_1}{b_1}$ 4. $\frac{a_0}{a_1}$
- **2.** Let $\sum_{n=1}^{\infty} a_n z^n$ be a convergent power series

such that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = R > 0$. Let p be a

polynomial of degree d. Then the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n p(n) z^n$ equals

- 3. Let f be an entire function on $\mathbb C$ and let Ω be
 - a bounded open subset of \mathbb{C} . Let $S = \{ \operatorname{Re} f(z) + \operatorname{Im} f(z) | z \in \Omega \}$. Which of the following statements is/are necessarily correct?
 - 1. S is an open set in \mathbb{R}
 - 2. S is a closed set in \mathbb{R}
 - 3. S is an open set of $\mathbb C$
 - 4. S is a discrete set in \mathbb{R}
- 4. Let u(x+iy)=x³-3xy²+2x. For which of the following functions v, is u+iv a holomorphic function on C?
 - 1. $v(x+iy) = y^3 3x^2y + 2y$
 - 2. $v(x+iy) = 3x^2y y^3 + 2y$
 - 3. $v(x+iy) = x^3 3xy^2 + 2x$
 - $4. \quad v(x+iy) = 0$

<u>PART – C</u>

- 5. Let f be an entire function on \mathbb{C} . Let $g(z) = \overline{f(\overline{z})}$. Which of the following statements is/are correct?
 - 1. if $f(z) \in \mathbb{R}$ for all $z \in \mathbb{R}$ then f=g
 - 2. if $f(z) \in \mathbb{R}$ for all $z \in \{z \mid \text{Im } z = 0\} \cup \{z \mid \text{Im } z = a\}$, for some a>0, then f(z+ia) = f(z-ia) for all $z \in \mathbb{C}$.
 - 3. If $f(z) \in \mathbb{R}$ for all $z \in \{z \mid \text{Im } z = 0\} \cup \{z \mid \text{Im } z = a\}$, for some a > 0, then f(z + 2ia) = f(z) for all $z \in \mathbb{C}$
 - 4. If $f(z) \in \mathbb{R}$ for all $z \in \{z \mid \text{Im } z = 0\} \cup \{z \mid \text{Im } z = a\}$ for some a > 0, then f(z + ia) = f(z) all $z \in \mathbb{C}$
- 6. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be an entire function and let r be a positive real number. Then

1.
$$\sum_{n=0}^{\infty} |a_n|^2 r^{2n} \le \sup_{|z|=r} |f(z)|^2$$

2.
$$\sup_{|z|=r} |f(z)|^2 \le \sum_{n=0}^{\infty} |a_n|^2 r^{2n}$$

3.
$$\sum_{n=0}^{\infty} |a_n|^2 r^{2n} \le \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta$$

4.
$$\sup_{|z|=r} |f(z)|^2 \le \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta$$

<u> JUNE – 2015</u>

<u>PART – B</u>

- 7. $\int_{|z+1|=2} \frac{z^2}{4-z^2} dz =$ 1.0 2. $-2\pi i$ 3. $2\pi i$ 4.1
- 8. How many elements does the set $\{z \in C / z^{60} = -1, z^k \neq -1 \text{ for } 0 < k < 60\}$ have? 1. 24 2. 30 3. 32 4. 45
- **9.** Let f be a real valued harmonic function on \mathbb{C} , that is, f satisfies the equation $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$.

Define the functions

$$g = \frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y}, \quad h = \frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y}$$

Then

- 1. g and h are both holomorphic functions.
- 2. g is holomorphic, but h need not be holomorphic.
- h is holomorphic, but g need not be 3. holomorphic.
- 4. both g and h are identically equal to the zero function.

PART – C

- **10.** Let *f* be an entire function. Which of the following statements are correct?
 - f is constant if the range of f is contained 1. in a straight line.
 - 2. f is constant if f has uncountably many zeros.
 - f is constant if f is bounded on $\{z \in \mathbb{C}:$ 3. $\operatorname{Re}(z) \leq 0$.
 - 4. f is constant if the real part of f is bounded.
- 11. Let f be analytic function defined on the open unit disc in C. Then f is constant if

1.
$$f\left(\frac{1}{n}\right) = 0$$
 for all $n \ge 1$.
2. $f(z) = 0$ for all $|z| = \frac{1}{2}$.
3. $f\left(\frac{1}{n^2}\right) = 0$ for all $n \ge 1$.
4. $f(z) = 0$ for all $z \in (-1,1)$

12. Let p be a polynomial in 1-complex variable. Suppose all zeroes of p are in the upper half plane $H = \{z \in C \mid Im(z) > 0\}$. Then

1.
$$\operatorname{Im} \frac{p'(z)}{p(z)} > 0 \text{ for } z \in \mathbb{R}.$$

2.
$$\operatorname{Re} i \frac{p'(z)}{p(z)} < 0 \text{ for } z \in \mathbb{R}$$

3.
$$\operatorname{Im} \frac{p'(z)}{p(z)} > 0 \text{ for } z \in \mathbb{C}, \text{ with } \operatorname{Im} z < 0$$

4.
$$\operatorname{Im} \frac{p'(z)}{p(z)} > 0 \text{ for } z \in \mathbb{C} \text{ with } \operatorname{Im} z > 0$$

DECEMBER – 2015

PART – B

13. Let a, b, c, $d \in \mathbb{R}$ be such that ad - bc > 0. Consider the Mobius transformation

$$T_{a,b,c,d}(z) = \frac{az+b}{cz+d}$$
. Define

 $H_{+} = \{z \in \mathbb{C} : Im(z) > 0\}, H_{-} = \{z \in \mathbb{C} : Im(z) < 0\}$ $R_{+} = \{z \in \mathbb{C} : \text{Re}(z) > 0\}, R_{-} = \{z \in \mathbb{C} : \text{Re}(z) < 0\}.$ Then, T_{a,b,c,d} maps 1. H₊ to H₊. 2. H₊ to H₋ 3. R₊ to R₊. 4. R₊ to R₋

14. What is the cardinality of the set

 $\{z \in \mathbb{C} \mid z^{98} = 1 \text{ and } z^n \neq 1 \text{ for any } 0 < n < 98\}$? 1.0. 2.12. 3. 42. 4, 49.

15. Consider the following power series in the complex variable z:

$$f(z) = \sum_{n=1}^{\infty} n \log n \, z^n, g(z) =$$
$$\sum_{n=1}^{\infty} \frac{e^{n^2}}{n} z^n. \text{ If } r, \text{ R are the radii of convergence of f and a respectively, then$$

convergence of f and g respectively, then 1. r = 0, R = 1. 2. r = 1, R = 0.

- 3. r = 1, R = ∞. 4. $r = \infty$. R = 1.

PART – C

16. Let
$$f(z) = \frac{1}{e^z - 1}$$
 for all $z \in \mathbb{C}$ such that

- $e^{z} \neq 1$. Then
- 1. f is meromorphic.
- 2. the only singularities of f are poles.
- 3. f has infinitely many poles on the imaginary axis
- 4. Each pole of f is simple.
- **17.** Let f be an analytic function in \mathbb{C} . Then f is constant if the zero set of f contains the sequence $a_{n} = 1/n$

1.
$$a_n = 1/11$$

$$\begin{array}{ccc}
a_n = (-1) & - \\
& n \\
\end{array}$$

3.
$$a_n = \frac{1}{2n}$$

4. $a_n = n$ if 4 does not divide n and $a_n = \frac{1}{n}$ if

4 divides n

18. Consider the function
$$f(z) = \frac{1}{z}$$
 on the

annulus
$$A = \left\{ z \in C : \frac{1}{2} < |z| < 2 \right\}.$$

Which of the following is/are true?

- There is a sequence {p_n(z)} of polynomials that approximate f(z) uniformly on compact subsets of A.
- There is a sequence {r_n(z)} of rational functions, whose poles are contained in C\A and which approximates f(z) uniformly on compact subsets of A.
- No sequence {p_n(z)} of polynomials approximate f(z) uniformly on compact subsets of A.
- No sequence {r_n(z)} of rational functions whose poles are contained in ℂ\A, approximate f(z) uniformly on compact subsets of A.

JUNE - 2016

<u>PART – B</u>

19. Let P(z), Q(z) be two complex non-constant polynomials of degree m,n respectively. The number of roots of P(z)=P(z)Q(z) counted with multiplicity is equal to:

min {m,n}
max {m,n}

3. m+n 4. m-n

20. Let D be the open unit disc in C and H(D) be the collection of all holomorphic functions on it.

Let
$$S = \left\{ f \in H(D) : f\left(\frac{1}{2}\right) = \frac{1}{2}, f\left(\frac{1}{4}\right) \right\}$$

 $= \frac{1}{4}, ..., f\left(\frac{1}{2n}\right) = \frac{1}{2n}, ... \right\}$ and
 $T = \left\{ f \in H(D) : f\left(\frac{1}{2}\right) = f\left(\frac{1}{3}\right) = \frac{1}{2}, f\left(\frac{1}{4}\right) \right\}$
 $= f\left(\frac{1}{5}\right) = \frac{1}{4}, ..., f\left(\frac{1}{2n}\right) = f\left(\frac{1}{2n+1}\right) = \frac{1}{2n}, ... \right\}$ Then

- 1. Both S,T are singleton sets
- 2. S is a singleton set but $T = \phi$
- 3. T is a singleton set but $S = \phi$
- 4. Both S,T are empty
- **21.** Let P(x) be a polynomial of degree $d \ge 2$. The radius of convergence of the power series
 - $\sum_{n=0}^{\infty} p(n) z^n \text{ is}$ 1. 0 2. 1
 3. ∞ 4. dependent on d

22. The residue of the function $f(z) = e^{-e^{z/z}}$ at z=0 is:

$$1.1 + e^{-1}$$

 $3 - e^{-1}$

2. e^{-1} 4. $1 - e^{-1}$

<u>PART – C</u>

23. Let $H = \{z = x + iy \in \mathbb{C} : y > 0\}$ be the upper half plane and $D = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disc. Suppose that f is a Mobius transformation, which maps H conformally onto D. Suppose that f(2i) = 0. Pick each correct statement from below.

1. f has a simple pole at z = -2i.

- 2. f satisfies f(i) f(-i) = 1.
- 3. f has an essential singularity at z = -2i.

4.
$$|f(2+2i)| = \frac{1}{\sqrt{5}}$$
.

24. Consider the function $F(z) = \int_{1}^{2} \frac{1}{(x-z)^{2}} dx$,

Im(z) > 0. Then there is a meromorphic function G(z) on \mathbb{C} that agrees with F(z) when Im(z) > 0, such that

- 1. 1, ∞ are poles of G(z)
- 2. $0,1,\infty$ are poles of G(z)
- 3. 1,2 are poles of G(z)
- 4. 1,2 are simple poles of G(z).
- **25.** Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function. Suppose that f = u + iv where u,v are the real and imaginary parts of f respectively. Then f is constant if
 - 1. $\{u(x,y) : z = x + iy \in \mathbb{C}\}$ is bounded
 - 2. $\{v(x,y) : z = x + iy \in \mathbb{C}\}$ is bounded
 - 3. $\{u(x,y) + v(x,y): z = x + iy \in \mathbb{C}\}$ is bounded
 - 4. $\{u^2(x,y) + v^2(x,y): z = x + iy \in \mathbb{C}\}$ is bounded

26. Let A = $\{z \in \mathbb{C} \mid z \mid > 1\}$, B = $\{z \in \mathbb{C} \mid z \neq 0\}$.

Which of the following are true?

- 1. There is a continuous onto function $f: A \rightarrow B$
- 2. There is a continuous one to one function $f:B\to A$
- 3. There is a nonconstant analytic function $f:B\to A$
- 4. There is a nonconstant analytic function $f:A \rightarrow B$

<u>IOHAN INSTITUTE OF MATHEMATIC</u>

Dedicated To Disseminating Mathematical Knowledge

DECEMBER - 2016

PART - B

27. The radius of convergence of the series

$$\sum_{n=1}^{n=1} z^{n^2}$$
 is
1.0
3.1

- - 4.2

2. ∞

28. Let C be the circle |z| = 3/2 in the complex plane that is oriented in the counter clockwise direction. The value of a for which

$$\int_{C} \left(\frac{z+1}{z^2 - 3z + 2} + \frac{a}{z-1} \right) dz = 0 \text{ is}$$

1. 1
3. 2
4. -2

- 29. Suppose f and g are entire functions and $g(z) \neq 0$ for all $z \in \mathbb{C}$. If $|f(z)| \leq |g(z)|$, then we conclude that
 - 1. $f(z) \neq 0$ for all $z \in \mathbb{C}$.
 - 2. f is a constant function.
 - 3. f(0) = 0.
 - 4. for some $C \in \mathbb{C}$, f(z) = Cg(z).
- **30.** Let f be a holomorphic function on $0 < |z| < \epsilon$,
 - ϵ > 0 given by a convergent Laurent series $\tilde{\Sigma}_{a} \pi^{n}$

$$\sum_{z \to \infty} u_n z$$
 · Given also that $\lim_{z \to 0} |f(z)| = \infty$

We can conclude that

- 1. $a_{-1} \neq 0$ and $a_{-n} = 0$ for all $n \ge 2$
- 2. $a_{-N} \neq 0$ for some $N \ge 1$ and $a_{-n} = 0$ for all n > N
- 3. $a_{-n} = 0$ for all $n \ge 1$ 4. $a_{-n} \neq 0$ for all $n \ge 1$

PART - C

$$\frac{z}{(1-e^z)\sin z}$$
. Then

- 1. z=0 is a pole of order 2.
- 2. for every $k \in \mathbb{Z}$, $z=2\pi$ ik is a simple pole.
- 3. for every $k \in \mathbb{Z} \setminus \{0\}$, $z = k \pi$ is a simple pole.
- 4. $z = \pi + 2\pi i$ is a pole.
- 32. Consider the polynomial

$$P(z) = \sum_{n=1}^{N} a_n z^n, 1 \le N < \infty, \ a_n \in \mathbb{R} \setminus \{0\}.$$
 Then,
with $\mathbf{D} = \{ w \in \mathbb{C} : |w| < 1 \}$

- 2. P(D) is open 1. $P(D) \subseteq \mathbb{R}$ 3. P(D) is closed 4. P(D) is bounded
- 33. Consider the polynomial

$$P(z) = \left(\sum_{n=0}^{5} a_n z^n\right) \left(\sum_{n=0}^{9} b_n z^n\right) \text{ where } a_n, b_n \in \mathbb{R}$$

- \forall n, $a_5 \neq 0$, $b_9 \neq 0$. Then counting roots with multiplicity we can conclude that P(z) has 1. at least two real roots.
- 2.14 complex roots
- 3. no real roots
- 4. 12 complex roots.
- **34.** Let **D** be the open unit disc in \mathbb{C} . Let $q: \mathbf{D} \rightarrow \mathbf{D}$ be holomorphic, q(0)=0, and let

$$h(z) = \begin{cases} \frac{g(z)}{z}, & z \in \mathbf{D}, z \neq 0\\ g'(0), & z = 0 \end{cases}$$
 Which of the

following statements are true?

1. h is holomorphic in **D**. 2. h(**D**) \subseteq **D**.

3.
$$|g'(0)| > 1$$
 4. $|g(\frac{1}{2})| \le \frac{1}{2}$

JUNE - 2017

PART – B

35. Let C denote the unit circle centered at the origin in \mathbb{C} . Then $\frac{1}{2\pi i} \int_{z} |1+z+z^2|^2 dz$, where the integral is taken anti-clockwise along C, equals 1.0 2.1 3.2 4.3

36. Consider the power series

$$f(x) = \sum_{n=2}^{\infty} \log(n) x^n.$$

The radius of convergence of the series f(x) is

- 1.0 3.3 2.1 4. ∞
- **37.** For an odd integer $k \ge 1$, let \mathcal{F} be the set of all entire functions f such that

 $f(x) = |x^k|$ for all $x \in (-1,1)$. Then the

- cardinality of \mathcal{F} is
- 1.0
- 2.1
- 3. strictly greater than 1 but finite

38. Suppose f is holomorphic in an open neighbourhood of $z_0 \in \mathbb{C}$. Given that the

series $\sum_{n=0}^{\infty} f^{(n)}(z_0)$ converges absolutely, we

- can conclude that 1. f is constant
- 2. f is a polynomial
- 3. f can be extended to an entire function
- 4. $f(x) \in \mathbb{R}$ for all $x \in \mathbb{R}$

PART - C

- **39.** Let f = u + iv be an entire function where u,v are the real and imaginary parts of f respectively. If the Jacobian matrix $\begin{bmatrix} u & (a) & u & (a) \end{bmatrix}$ is a section for the section of the section of
 - $J_a = \begin{bmatrix} u_x(a) & u_y(a) \\ v_x(a) & v_y(a) \end{bmatrix} \text{ is symmetric for all } a \in \mathbb{C} \text{ , then}$
 - 1. f is a polynomial.
 - f is a polynomial of degree ≤1.
 - 3. f is necessarily a constant function
 - 4. f is a polynomial of degree strictly greater than 1.

40. Consider the function $f(z) = \frac{\sin(\pi z/2)}{\sin(\pi z)}$.

Then f has poles at

- 1. all integers
- 2. all even integers
- 3. all odd integers
- 4. all integers of the form 4k+1, k $\in \mathbb{Z}$
- **41.** Consider the M $\ddot{\mathrm{o}}$ bius transformation

 $f(z) = \frac{1}{z}, z \in \mathbb{C}, z \neq 0.$ If C denotes a circle

with positive radius passing through the origin, then f map C $\ 0\$ to

- 1. a circle
- 2. a line
- 3. a line passing through the origin
- 4. a line not passing through the origin
- **42.** For which among the following functions f(z)

defined on $G=\mathbb{C}\setminus\{0\}$, is there no sequence of polynomials approximating f(z) uniformly on compact subsets of G?

1. $\exp(z)$ 2. 1/z3. z^2 4. $1/z^2$

DECEMBER - 2017

PART – B

43. The function $f : \mathbb{C} \to \mathbb{C}$ defined by $f(z) = e^{z} + e^{-z}$ has

- 1. finitely many zeros
- 2. no zeros
- 3. only real zeros
- 4. has infinitely many zeros
- **44.** Let f be a holomorphic function in the open unit disc such that $\lim_{z\to 1} f(z)$ does not exist.

Let $\sum_{n=0}^{\infty} a_n z^n$ be the Taylor series of f about z = 0 and let R be its radius of convergence. Then

- 1. R = 0
 2. 0 < R < 1</td>

 3. R = 1
 4. R > 1
- **45.** Let C be the circle of radius 2 with centre at the origin in the complex plane, oriented in the anti-clockwise direction. Then the integral

$$\oint_C \frac{dz}{(z-1)^2}$$
 is equal to
1. $\frac{1}{2\pi i}$ 2. $2\pi i$
3. 1 4. 0

46. Let **D** be the open unit disc in the complex plane and $U = \mathbf{D} \setminus \left\{-\frac{1}{2}, \frac{1}{2}\right\}$. Also, let

H₁ = {f : **D**→ℂ | f is holomorphic and bounded} and H₂ = {f : **U** → ℂ | f is holomorphic and bounded}. Then the map r : H₁ → H₂ given by r(f) = f|_U, the restriction of f to U, is 1. injective but not surjective 2. surjective but not injective 3. injective and surjective

4. neither injective nor surjective

PART – C

- **47.** Let f be an entire function. Consider $A=\{z\in \mathbb{C}|f^{(n)}(z)=0 \text{ for some positive integer n}\}$. Then
 - 1. if $A = \mathbb{C}$, then f is a polynomial
 - 2. if $A = \mathbb{C}$, then f is a constant function
 - 3. if A is uncountable, then f is a polynomial
 - 4. If A is uncountable, then f is a constant function

48. Let $f: \mathbb{C} \to \mathbb{C}$ be a holomorphic function and let u be the real part of f and v the imaginary part of f. Then, for $x, y \in \mathbb{R}$. $|f'(x + iy)|^2$ it equal to 1. $u_x^2 + u_y^2$ 2. $u_x^2 + v_x^2$ 3. $v_y^2 + u_y^2$ 4. $v_y^2 + v_x^2$

- **49.** Let $p(z) = z^{n} + a_{n-1} z^{n-1} + ... + a_{0}$, where $a_{0}, ..., a_{n-1}$ are complex numbers and let $q(z) = 1 + a_{n-1} z + ... + a_{0}z^{n}$. If $|p(z)| \le 1$ for all z with $|z| \le 1$ then 1. $|q(z)| \le 1$ for all z with $|z| \le 1$
 - 2. q(z) is a constant polynomial
 - 3. $p(z) = z^n$ for all complex numbers z
 - 4. p(z) is a constant polynomial
- 50. Let f be a non-constant entire function and let E be the image of f. Then
 1. E is an open set
 2. E ∩ {z:|z|<1} is empty
 - 2. E | $\{z: |z| < 1\}$ is empty
 - 3. E $\cap \mathbb{R}$ is non empty
 - 4. E is a bounded set

<u>JUNE – 2018</u>

<u>PART – B</u>

- **51.** The value of the integral $\oint_{|1-z|=1} \frac{e^z}{z^2 1} dz$ is 1. 0 2. $(\pi i)e$
 - 3. $(\pi i)e (\pi i)e^{-1}$ 4. $(e + e^{-1})$
- **52.** Let $f: \{z \mid z \mid < 1\} \rightarrow \mathbb{C}$ be a non-constant analytic function. Which of the following conditions can possibly be satisfied by f?

1.
$$f\left(\frac{1}{n}\right) = f\left(\frac{-1}{n}\right) = \frac{1}{n^2} \forall n \in \mathbb{N}$$

2. $f\left(\frac{1}{n}\right) = f\left(\frac{-1}{n}\right) = \frac{1}{2n+1} \forall n \in \mathbb{N}$
3. $\left|f\left(\frac{1}{n}\right)\right| < 2^{-n} \forall n \in \mathbb{N}$
4. $\frac{1}{\sqrt{n}} < \left|f\left(\frac{1}{n}\right)\right| < \frac{2}{\sqrt{n}} \forall n \in \mathbb{N}$

53. Consider the map $\varphi : \mathbb{C} \setminus \{1\} \to \mathbb{C}$ given by $\varphi(z) = \frac{1+z}{1-z}$. Which of the following is true? 1. $\varphi(\{z \in \mathbb{C} \mid |z| < 1\}) \subseteq \{z \in \mathbb{C} \mid |z| < 1\}$

- 2. $\varphi(\{z \in \mathbb{C} \mid \text{Re}(z) < 0\}) \subseteq \{z \in \mathbb{C} \mid \text{Re}(z) < 0\}$
- 3. φ is onto
- 4. $\varphi(\mathbb{C}\setminus\{1\}) = \mathbb{C}\setminus\{-1\}$
- **54.** Suppose that f is a non constant analytic function defined over ℂ. Then which of the following is false?
 - 1. f is unbounded
 - 2. f sends open sets into open sets
 - there exists an open connected domain U on which f is never f|u attains its minimum at one point of u
 - 4. the image of f is dense in $\ensuremath{\mathbb{C}}$

<u>PART – C</u>

- **55.** Let Ω be an open connected subset of \mathbb{C} . Let $E = \{z_1, z_2, ..., z_r\} \subseteq \Omega$. Suppose that $f : \Omega \rightarrow \mathbb{C}$ is a function such that $f_{|(\Omega \setminus E)}$ is analytic. Then f is analytic on Ω if 1. f is continuous on Ω 2. f is bounded on Ω 3. for every j, if $\sum_{m \in \mathbb{Z}} a_m (z - z_j)^m$ is Laurent series expansion of f at z_j , then $a_m = 0$ for m = -1, -2, -3, ...
 - 4. for every j, if $\sum_{m \in \mathbb{Z}} a_m (z z_j)^m$ is Laurent

series expansion of f at z_j , then $a_{-1} = 0$

- **56.** Suppose that f: $\mathbb{C}\to\mathbb{C}$ is an analytic function. Then f is a polynomial if
 - 1. for any point $a \in \mathbb{C}$, if

 $f(z) = \sum_{0}^{\infty} a_n (z-a)^n$ is a power series expansion at a, then $a_n = 0$ for at least one n

- 2. $\lim_{|z| \to \infty} |f(z)| = \infty$
- 3. $\lim_{z \to z} |f(z)| = M$ for some M
- 4. $|f(z)| \le M|z|^n$ for |z| sufficiently large and for some n
- **57.** Let **D** be the open unit disk centered at 0 in \mathbb{C} and f: **D** $\rightarrow \mathbb{C}$ be an analytic function. Let f = u + iv, where u, v are the real and imaginary parts of f. If f(z) = $\sum a_n z^n$ is the power series of f, then f is constant if
 - 1. \bar{f} is analytic
 - 2. $u(1/2) \ge u(z) \quad \forall \ z \in \boldsymbol{D}$
 - 3. The set $\{n \in \mathbb{N} | a_n = 0\}$ is infinite

4. For any closed curve γ in **D**, $\int_{\gamma} \frac{f(z) dz}{(z-a)^2} = 0 \ \forall \ a \in \mathbf{D} \text{ with } |\mathbf{a}| \ge \frac{1}{2}$

58. Which of the following statements are true?

- 1. If {a_k} is bounded then $\sum_{k=0}^{\infty} a_k z^k$ defines an analytic function on the open unit disk
- 2. If $\sum_{0}^{\infty} a_k z^k$ defines an analytic function on the open disk then {a_k} must converge to zero
- 3. If $f(z) = \sum_{0}^{\infty} a_{k} z^{k}$ and $g(z) = \sum_{0}^{\infty} b_{k} z^{k}$ are two power series functions whose radii of convergence are 1, then the product f.g has a power series representation of the form $\sum_{0}^{\infty} c_{k} z^{k}$ on the open unit disk
- 4. If $f(z) = \sum_{0}^{\infty} a_k z^k$ has a radius of convergence 1, then f is continuous on $\Omega = \{z \in \mathbb{C} | |z| \le 1\}$

DECEMBER - 2018

PART – B

59. Consider the polynomials p(z), q(z) in the complex variable z and let $I_{p,q} = \oint_{\gamma} p(z) \overline{q(z)} dz$, where γ denotes the

closed contour $\gamma(t) = e^{it}, 0 \le t \le 2\pi$. Then

- 1. $I_{z^{m},z^{n}} = 0$ for all positive integers m,n with $m \neq n$
- 2. $I_{z^n z^n} = 2\pi i$ for all positive integers n
- 3. $I_{p,1} = 0$ for all polynomials p
- 4. $I_{p,q} = p(0)\overline{q(0)}$ for all polynomials p,q
- 60. Let $\gamma(t) = 3e^{it}, 0 \le t \le 2\pi$ be the positively oriented circle of radius 3 centred at the origin. The value of λ for which $\oint_{\gamma} \frac{\lambda}{z-2} dz = \oint_{\gamma} \frac{1}{z^2 - 5z + 4} dz$ is 1. $\lambda = \frac{-1}{3}$ 2. $\lambda = 0$
 - 3. $\lambda = \frac{1}{2}$ 4. $\lambda = 1$

- **61.** Let $f: \mathbb{C} \to \mathbb{C}$ be a non-constant entire function and let Image (f) = { $w \in \mathbb{C}:\exists z \in \mathbb{C}$ such that f(z)=w}. Then
 - 1. The interior of Image (f) is empty
 - 2. Image (f) intersects every line passing through the origin
 - 3. There exists a disc in the complex plane, which is disjoint from Image (f)
 - 4. Image (f) contains all its limit points

PART - C

62. Let H denote the upper half plane, that is, $H = \{z = x + iy : y > 0\}$. For $z \in H$, which of the following are true?

1.
$$\frac{1}{z} \in H$$

2. $\frac{1}{z^2} \in H$
3. $\frac{-z}{z+1} \in H$
4. $\frac{z}{2z+1} \in H$

- **63.** Let $f : \mathbb{C} \to \mathbb{C}$ be an analytic function. Then which of the following statements are true?
 - 1. If $|f(z)| \le 1$ for all $z \in \mathbb{C}$, then f ' has infinitely many zeroes in \mathbb{C}
 - 2. If f is onto, then the function f (cos z) is onto
 - 3. If f is onto, then the function $f(e^z)$ is onto
 - 4. If f is one-one, then the function $f(z^4 + z + 2)$ is one-one
- **64.** Consider the entire functions $f(z) = 1+z +z^{20}$ and $g(z) = e^z$, $z \in \mathbb{C}$. Which of the following statements are true ?
 - 1. $\lim_{|z|\to\infty} |f(z)| = \infty$
 - 2. $\lim_{|z|\to\infty} |g(z)| = \infty$
 - 3. f⁻¹($z \in \mathbb{C}$: $|z| \le R$) is bounded for every R>0
 - 4. g $^{-1}(\{z \in \mathbb{C}: |z| \le R\})$ is bounded for every R>0
- **65.** Which of the following statements are true? 1. tan z is an entire function
 - 2. tan z is a meromorphic function on ${\mathbb C}$
 - 3. tan z has an isolated singularity at ∞
 - 4. tan z has a non-isolated singularity at ∞

JUNE - 2019

PART – B

- 66. Let C be the counter-clockwise oriented circle of radius $\frac{1}{2}$ centred at $i = \sqrt{-1}$. Then the value of the contour integral $\oint_C \frac{dx}{x^4 - 1}$ is 1. -π/2 2. π/2 3. -π 4. π
- 67. Consider the function $f : \mathbb{C} \to \mathbb{C}$ given by $f(z) = e^{z}$. Which of the following is false?
 - 1. $f(\{z \in \mathbb{C} : |z| < 1\})$ is not an open set
 - 2. $f(\{z \in \mathbb{C} : |z| \le 1\})$ is not an open set
 - 3. $f(\{z \in \mathbb{C} : |z|=1\})$ is a closed set
 - 4. $f(\{z \in \mathbb{C} : |z| > 1\})$ is an unbounded open set
- 68. Given a real number a > 0, consider the triangle Δ with vertices 0, a, a + ia. If Δ is given the counter clockwise orientation, then the contour integral $\oint \operatorname{Re}(z) dz$ (with Re (z) denoting the real part of z) is equal to

69. Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function such that $\lim_{x\to 0} \left| f\left(\frac{1}{x}\right) \right| = \infty$. Then which of the following is true? 1. f is constant 2. f can have infinitely many zeros 3. f can have at most finitely many zeros

 $i\frac{3a^2}{2}$

4. f is necessarily nowhere vanishing

PART – C

- 70. Let $f(z) = (z^3 + 1) \sin z^2$ for $z \in \mathbb{C}$. Let f(z) =u(x, y) + i v(x, y), where z = x + iy and u, vare real valued functions. Then which of the following are true?
 - 1. $u : \mathbb{R}^2 \to \mathbb{R}$ is infinitely differentiable 2. u is continuous but need not be
 - differentiable
 - 3. u is bounded

4. f can be represented by an absolutely convergent power series $\sum_{n=0}^{\infty} a_n z^n$ for

all $z \in \mathbb{C}$

- 71. Let Re(z), Im(z) denote the real and imaginary parts of $z \in \mathbb{C}$, respectively. Consider the domain $\Omega = \{z \in \mathbb{C} : \operatorname{Re}(z) > |\operatorname{Im}(z)|\}$ and let $f_n(z) =$ log z^n , where $n \in \{1, 2, 3, 4\}$ and where log : $\mathbb{C} \setminus (-\infty, 0] \rightarrow \mathbb{C}$ defines the principal branch of logarithm. Then which of the following are true? 1. $f_1(\Omega) = \{z \in \mathbb{C} : 0 \le |\text{Im}(z)| < \pi/4\}$ 2. $f_2(\Omega) = \{z \in \mathbb{C} : 0 \le |\text{Im}(z)| < \pi/2\}$ 3. $f_3(\Omega) = \{z \in \mathbb{C} : 0 \le |\text{Im}(z)| < 3\pi/4\}$ 4. $f_4(\Omega) = \{z \in \mathbb{C} : 0 \le |\text{Im}(z)| < \pi\}$
- 72. Consider the set

 $F = \{f : \mathbb{C} \to \mathbb{C} \mid f \text{ is an entire function}, f \in \mathbb{C} \}$ $|f'(z)| \leq |f(z)|$ for all $z \in \mathbb{C}$. Then which of the following are true? 1. F is a finite set 2. F is an infinite set 3. $F = \{\beta e^{\alpha z} : \beta \in \mathbb{C}, \alpha \in \mathbb{C}\}$ 4. F = { $\beta e^{\alpha z}$: $\beta \in \mathbb{C}$, $|\alpha| \leq 1$ }

Let D = { $z \in \mathbb{C} | |z| < 1$ } and $\omega \in D$. Define 73. $F_{\omega}: D \to D$ by $F_{\omega}(z) = \frac{\omega - z}{1 - \overline{\omega} z}$. Then which of the following are true? 1. F is one to one 2. F is not one to one 3. F is onto 4. F is not onto

DECEMBER - 2019

PART – B

74. For
$$z \in \mathbb{C}$$
, let $f(z) = \begin{cases} \overline{z}^2 \\ z \\ 0 \end{cases}$ if $z \neq 0$.

otherwise.

Then which of the following statements is false?

- 1. f(z) is continuous everywhere
- 2. f(z) is not analytic in any open neighbourhood of zero
- 3. zf(z) satisfies the Cauchy-Riemann equations at zero
- 4. f(z) is analytic in some open subset of C

75. Let $T : \mathbb{C} \to M_2(\mathbb{R})$ be the map given by $T(z) = T(x + iy) = \begin{bmatrix} x & y \\ -y & x \end{bmatrix}$

Then which of the following statements is false?

- 1. $T(z_1z_2) = T(z_1) T(z_2)$ for all $z_1, z_2 \in \mathbb{C}$
- 2. T(z) is singular if and only if z = 0

3. There does not exist non-zero A \in $M_2(\mathbb{R})$ such that the trace of T(z)A is zero for all z \in \mathbb{C}

- 4. T(z_1 + z_2) = T(z_1) + T(z_2) for all z_1, z_2 \in \mathbb{C}
- **76.** Consider the polynomial $f(z) = z^2 + az + p^{11}$, where $a \in Z \setminus \{0\}$ and $p \ge 13$ is a prime. Suppose that $a^2 \le 4p^{11}$. Which of the following statements is true?
 - 1. f has a zero on the imaginary axis
 - 2. f has a zero for which the real and imaginary parts are equal
 - 3. f has distinct roots
 - 4. f has exactly one real root
- 77. Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function with $f\left(\frac{1}{n}\right) = \frac{1}{n^2}$ for all $n \in \mathbb{N}$. Then which of
 - the following statements is true?
 - 1. No such f exists
 - 2. such an f is not unique
 - 3. $f(z) = z^2$ for all $z \in \mathbb{C}$
 - 4. f need not be a polynomial function

<u> PART – C</u>

78. Let U be an open subset of \mathbb{C} and $f: U \rightarrow \mathbb{C}$ be an analytic function. Then which of

the following are true?

- 1. If f is one-one, then f(U) is open in $\mathbb C$
- 2. If f is onto, then $U = \mathbb{C}$
- 3. If f is onto, then f is one-one
- 4. f(U) is closed in $\mathbb{C},$ then f(U) is connected

- **79.** Let $f : \mathbb{C} \to \mathbb{C}$ be an analytic function. For $z_0 \in \mathbb{C}$, which of the following statements are true?
 - 1. can take the value z_0 at finitely many 1

points in
$$\frac{1}{n} \mid n \in \mathbb{N}$$

- 2. f(1/n) = z_0 for all $n \in \mathbb{N} \Rightarrow f$ is the constant function z_0
- 3. f(n) = z_0 for all $n \in \mathbb{N} \Rightarrow f$ is the constant function z_0
- 4. $f(r)=z_0 \mbox{ for all } r\in \mathbb{Q}\cap [1,\,2] \Rightarrow f$ is the constant function z_0

80. Let U ⊂ C be an open connected set and
f: U → C be a non-constant analytic function. Consider the following two sets:
X = {z ∈ U : f(z) = 0}
Y = {z ∈ U : f vanishes on an open neighbourhood of z in U}
Then which of the following statements are true?
1. X is closed in U
2. Y is closed in U

- 3. X has empty interior
- 4. Y is open in U
- 81. Consider the power series

$$f(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n)!}$$
. Which of the

following are true?

- 1. Radius of convergence of f(z) is infinite
- 2. The set $\{f(x) : x \in \mathbb{R}\}$ is bounded
- 3. The set $\{f(x) : -1 < x < 1\}$ is bounded
- 4. f(z) has infinitely many zeroes

<u>JUNE – 2020</u>

<u> PART – B</u>

82. Let γ be the positively oriented circle in the complex plane given by

$$\{z \in \mathbb{C} : |z - 1| = 1\}.$$

Then $\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z^3 - 1}$ equals
1.3
3.2
2.1/3
4.1/2

MOHAN INSTITUTE OF MATHEMATICS

Dedicated To Disseminating Mathematical Knowledge

83. For a positive integer p, consider the holomorphic function
 f(z) = sin z/z^p for z ∈ C\{0}.
For which values of p does there exist a holomorphic function g : C\{0} → C such that f(z) = g'(z) for z ∈ C\{0}?
1. All even integers
2. All odd integers
3. All multiples of 3
4. All multiples of 4
84. Let γ be the positively oriented circle in the complex plane given by {z ∈ C : |z − 1| = 1/2}. The line integral
$$\int_{\gamma} \frac{ze^{1/z}}{z^2 - 1} dz$$
 equals 1. iπe 2. -iπe 3. πe 4. -πe
85. Let p be a positive integer. Consider the closed curve r(t) = e^{it}, 0 ≤ t < 2π. Let f be a function holomorphic in {z: |z| < R} where R > 1. If f has a zero only at z₀, 0 < |z₀| < R, and it is of multiplicity q, then $\frac{1}{2\pi i} \int_{r} \frac{f'(z)}{f(z)} z^p dz$ equals 1. qz_0^p 2. z_0q^p
3. pz_0^q 4. z_0p^q
PART - C
86. For z ≠ -i, let $f(z) = \exp\left(\frac{1}{z+i}\right) - 1$. Which of the following are true?
1. f has a sequence of zeroes that converges to a removable singularity of f
3. f has a sequence of zeroes that converges to an essential singularity of f
87. Let f be a holomorphic function on the open unit disc
D = {z ∈ C : |z| < 1}. Suppose that |f| ≥ 1 on D and f(0) = i.

Which of the following are possible values of $f\left(\frac{1}{2}\right)$? 1. -i 2. i 3. 1 4. -1

88. Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disc and let $f : \mathbb{D} \to \mathbb{D}$ be a holomorphic function. Suppose that f(0) = 0 and f'(0) = 0. Which of the following are possible

values of $f\left(\frac{1}{2}\right)$? 1. 1/4 2. -1/4 3. 1/3 4. -1/3

89. Let n be a positive integer. For a real number R > 1, let $z(\theta) = Re^{i\theta}$, $0 \le \theta < 2\pi$. The set $\{ \theta \in [0, 2\pi) : |z(\theta)^n + 1| = |z(\theta)|^n - 1 \}$ contains which of the following sets? $1. \{ \theta \in [0, 2\pi) : \cos n\theta = 1 \}$ $2. \{ \theta \in [0, 2\pi) : \sin n\theta = 1 \}$ $3. \{ \theta \in [0, 2\pi) : \cos n\theta = -1 \}$ $4. \{ \theta \in [0, 2\pi) : \sin n\theta = -1 \}$

<u>JUNE – 2021</u>

<u> PART – B</u>

90. Let f(z) be a non-constant entire function and z = x + iy. Let u(x, y), v(x, y) denote its real and imaginary parts respectively. Which of the following statements is FALSE? 1. $u_x = v_y$ and $u_y = -v_x$ 2. $u_y = v_x$ and $u_x = -v_y$ 3. $|f'(x + iy)|^2 = u_x(x, y)^2 + v_x(x, y)^2$ 4. $|f'(x + iy)|^2 = u_y(x, y)^2 + v_y(x, y)^2$ 91. Let f be a rational function of a complex variable z given by $f(z) = \frac{z^3 + 2z - 4}{z}$.

The radius of convergence of the Taylor series of f at z = 1 is 1. 0 2. 1 3. 2 4. ∞

92. Let γ be the positively oriented circle $\{z \in \mathbb{C} : |z| = 3/2\}$. Suppose that

$$\int_{\gamma} \frac{e^{i\pi z}}{(z-1)(z-2i)^2} dz = 2\pi i C.$$

96.

Then |C| equals1. 22. 53. 1/24. 1/5

93. Let $\mathbb{D} \subset \mathbb{C}$ be the open disc $\{z \in \mathbb{C} : |z| < 1\}$ and $O(\mathbb{D})$ be the space of all holomorphic functions on \mathbb{D} . Consider the sets

 $A = \begin{cases} f \in O(\mathbb{D}): f\left(\frac{1}{n}\right) = \\ \begin{cases} e^{-n} & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd} \end{cases}; \text{ for } n \ge 2 \\ \end{cases}$ B = {f \in O(\mathbf{D}): f(1/n) = (n - 2)/(n - 1), n \ge 2}. Which of the following statements is true? 1. Both A and B are non-empty 2. A is empty and B has exactly one element 3. A has exactly one element and B is empty 4. Both A, B are empty

PART – C

94. For any complex valued function f, let D_f denote the set on which the function f satisfies Cauchy-Riemann equations. Identify the functions for which D_f is equal to \mathbb{C} .

(1)
$$f(z) = \frac{z}{1+|z|}$$

(2) $f(z) = (\cos \alpha x - \sin \alpha y) + i(\sin \alpha x + \cos \alpha y)$, where z = x + iy

(3)
$$f(z) = \begin{cases} e^{-\frac{1}{z^4}} & \text{if } z \neq 0 \\ 0 & \text{if } z = 0 \end{cases}$$

(4) $f(z) = x^2 + iy^2$, where $z = x + iy$

95. Let \mathbb{T} denote the unit circle $\{z \in \mathbb{C} : |z| = 1\}$ in the complex plane and let \mathbb{D} be the open unit disc $\{z \in \mathbb{C} : |z| < 1\}$. Let R denote the set of points z_0 in \mathbb{T} for which there exists a holomorphic function f in an open neighbourhood U_{z_0} of z_0 such that

$$f(z) = \sum_{n=0}^{\infty} z^{4n}$$
 in $U_{z_0} \cap \mathbb{D}$. Then R contains

(1) All points of \mathbb{T}

- (2) Infinitely many points of \mathbb{T}
- (3) All points of \mathbb{T} except a finite set

(4) No points of $\mathbb T$

Consider the function $f(z) = \frac{(\sin z)^m}{(1 - \cos z)^n} \text{ for } 0 < |z| < 1 \text{ where}$ m, n are positive integers. Then z = 0 is (1) A removable singularity if m ≥ 2n (2) A pole if m < 2n (3) A pole if m ≥ 2n (4) An essential singularity for some values of m, n

97. Let f be an entire function such that $|zf(z) - 1 + e^{z}| \le 1 + |z|$ for all $z \in \mathbb{C}$. Then (1) f'(0) = -1 (2) f'(0) = -1/2 (3) f''(0) = -1/3 (4) f''(0) = -1/4

<u> JUNE – 2022</u>

<u>PART – B</u>

98. If $|e^{e^{z}}|=1$ for a complex number z=x + iy, x, $y \in \mathbb{R}$, then which of the following is true? 1. $x = n\pi$ for some integer n 2. $y = (2n+1)\frac{\pi}{2}$ for some integer n 3. $y = n\pi$ for some integer n 4. $x = (2n+1)\frac{\pi}{2}$ for some integer n 99. Let $f(z) = (1-z)e^{\left(z+\frac{z^{2}}{2}\right)} = 1 + \sum_{n=1}^{\infty} a_{n}z^{n}$. Which of the following is false? 1. $f'(z) = -z^{2}e^{\left(z+\frac{z^{2}}{2}\right)}$ 2. $a_{1} = a_{2}$ 3. $a_{n} \in (-\infty, 0]$ 4. $\sum_{n=3}^{\infty} |a_{n}| < 1$

- **100.** Let f be a non-constant entire function such that |f(z)| = 1 for |z| = 1. Let U denote the open unit disk around 0. Which of the followng is False?
 - 1. $f(\mathbb{C}) = \mathbb{C}$
 - 2. f has atleast one zero in U
 - 3. f has atmost finitely many distinct zeroes in $\ensuremath{\mathbb{C}}$
 - 4. f can have a zero outside U

For a positive integer n, let f⁽ⁿ⁾ denote the 101. nth derivative of f. Suppose an entire function f satisfies f $^{(2)}$ + f = 0. Which of the following is correct?

- 1. $(f^{(n)}(0))_{n \ge 1}$ is convergent 2. $\lim_{n \to \infty} f^{(n)}(0) = 1$ 3. $\lim_{n \to \infty} f^{(n)}(0) = -1$

- 4. $(|f^{(n)}(0)|)_{n\geq 1}$ has a convergent subsequence

PART – C

- 102. For a bounded open connected subset Ω of \mathbb{C} , let $f: \Omega \to \mathbb{C}$ be holomorphic. Let (z_k) be a sequence of distinct complex numbers in Ω converging to z_0 . If $f(z_k) = 0$ for all $k \ge 1$ then which of the following statements are necessarily true?
 - 1. If f is non-zero, then $z_0 \in \partial \Omega$
 - 2. There exists r > 0 such that f(z) = 0 for every $z \in \Omega$ satisfying $|z - z_0| \leq r$
 - 3. If $z_0 \in \Omega$, there exists r > 0 such that f(z) = 0 on $|z - z_0| = r$
 - 4. $z_0 \in \partial \Omega$

103. Let f be an entire function such that $f(z)^2$ + $f'(z)^2 = 1$. Consider the following sets $X = \{z : f'(z) = 0\}, Y = \{z : f''(z) + f(z) = 0\}.$ Which of the following statements are true?

- 1. Either X or Y has a limit point
- 2. If Y has a limit point, then f' is constant
- 3. If X has a limit point, then f is constant

4.
$$f(z) \in \{1, -1\}$$
 for all $z \in \mathbb{C}$

- 104. Let U be a bounded open set of $\mathbb C$ containing 0. Let $f: U \rightarrow U$ be holomorphic with f(0) = 0. For $n \in \mathbb{N}$, let fⁿ denote the composition of f done n times, that is, $f^n = f \circ \dots \circ f$ while f' denotes the n times derivative of f. Which of the following statements are true? 1. $(f^{n})'(0) = (f'(0))^{n}$ 2. $\hat{f}^n(U) \subset U$
 - 3. The sequence $((f'(0))^n)_n$ is bounded 4. $|f'(0)| \le 1$
- 105. For an open subset Ω of \mathbb{C} such that $0 \in$ Ω , which of the following statements are true? 1. $\{e^z : z \in \Omega\}$ is an open subset of \mathbb{C}
 - 2. $\{|e^z| : z \in \Omega\}$ is an open subset of \mathbb{R}

- 3. {sinz: $z \in \Omega$ } is an open subset of \mathbb{C}
- 4. { $|sinz| : z \in \Omega$ } is an open subset of \mathbb{R}

JUNE – 2023

PART – B

106. Let C be the positively oriented circle in the complex plane of radius 3 centered at the origin. What is the value of the integral

$$\int_{C} \frac{dz}{z^{2}(e^{z} - e^{-z})}?$$
(1) i\pi/12
(2) -i\pi/12
(3) i\pi/6
(4) -i\pi/6

107. Consider the function f defined by

$$f(z) = \frac{1}{1 - z - z^2} \text{ for } z \in \mathbb{C} \text{ such that}$$

1 - z - z² \ne 0. Which of the following statements is true?

- (1) f is an entire function
- (2) f has a simple pole at z = 0
- (3) f has a Taylor series expansion $f(z) = \sum_{n=0}^{\infty} a_n z^n$, where coefficients a_n are recursively defined as follows: $a_0 = 1$, $a_1 = 0$ and $a_{n+2} = a_n + a_{n+1}$ for $n \ge 0$ (4) f has a Taylor series expansion
- $f(z) = \sum_{n=0}^{\infty} a_n z^n$, where coefficients an are recursively defined as follows: $a_0 = 1$, $a_1 = 1$ and $a_{n+2} = a_n + a_{n+1}$ for $n \ge 0$
- 108. Let f be an entire function that satisfies $|f(z)| \le e^{y}$ for all $z = x + iy \in \mathbb{C}$, where x, $y \in \mathbb{R}$. Which of the following statements is true? (1) $f(z) = ce^{-iz}$ for some $c \in \mathbb{C}$ with $|c| \leq 1$ (2) $f(z) = ce^{iz}$ for some $c \in \mathbb{C}$ with $|c| \leq 1$ (3) $f(z) = e^{-ciz}$ for some $c \in \mathbb{C}$ with $|c| \le 1$ (4) $f(z) = e^{ciz}$ for some $c \in \mathbb{C}$ with $|c| \le 1$ Let $f(z) = \exp\left(z + \frac{1}{z}\right)$, $z \in \mathbb{C}\setminus\{0\}$. The 109. residue of f at z = 0 is (1) $\sum_{l=0}^{\infty} \frac{1}{(l+1)!}$

(2)
$$\sum_{l=0}^{\infty} \frac{1}{l!(l+1)}$$

(3) $\sum_{l=0}^{\infty} \frac{1}{l!(l+1)!}$ (4) $\sum_{l=0}^{\infty} \frac{1}{l!(l+1)!}$

$$\sum_{l=0} \overline{(l^2+l)!}$$

<u> PART – C</u>

110. Let f(z) be an entire function on \mathbb{C} . Which of the following statements are true? (1) $f(\overline{z})$ is an entire function

- (2) $\overline{f(z)}$ is an entire function
- (3) $\overline{f(\overline{z})}$ is an entire function
- (4) $\overline{f(z)} + f(\overline{z})$ is an entire function
- **111.** Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disc and C the positively oriented boundary $\{|z| = 1\}$. Fix a finite set $\{z_1, z_2, ..., z_n\} \subseteq \mathbb{D}$ of distinct points and consider the polynomial

 $g(z) = (z - z_1) (z - z_2) \dots (z - z_n)$ of degree n. Let f be a holomorphic function in an open neighbourhood of $\overline{\mathbb{D}}$ and define

$$P(z) = \frac{1}{2\pi i} \int_C f(\zeta) \frac{g(\zeta) - g(z)}{(\zeta - z)g(\zeta)} d\zeta.$$

Which of the following statements are true?

- (1) P is a polynomial of degree n
- (2) P is a polynomial of degree n 1
- (3) P is a rational function on C with poles at z₁, z₂, ..., z_n
 (4) P(x) ≤ z₁
- (4) $P(z_j) = f(z_j)$ for j = 1, 2, ..., n.
- **112.** Let $D = \{z \in \mathbb{C}: |z| < 1\}$. Consider the following statements.
 - (a) $f: D \rightarrow D$ be a holomorphic function. Suppose α , β are distinct complex numbers in D such that $f(\alpha) = \alpha$ and $f(\beta) = \beta$. Then f(z) = z for all $z \in D$.
 - (b) There does not exist a bijective holomorphic function from D to the set of all complex numbers whose imaginary part is positive.
 - $\begin{array}{ll} \text{(c)} & f: D \to D \text{ be a holomorphic function.} \\ & \text{Suppose } \alpha \in D \text{ be such that } f(\alpha) = \alpha \\ & \text{and } f'(\alpha) = 1. \text{ Then } f(z) = z \text{ for all } z \in \\ & \text{D.} \end{array}$

Which of the following options are true? (1) (a), (b) and (c) are all true.

- (2) (a) is true.
- (3) Both (a) and (b) are false.
- (4) Both (a) and (c) are true.
- **113.** Let $f : \{z : |z| < 1\} \rightarrow \{z : |z| \le 1/2\}$ be a holomorphic function such that f(0) = 0. Which of the following statements are true?

(1) $|f(z)| \le |z|$ for all z in $\{z : |z| < 1\}$.

(2)
$$|f(z)| \le \left|\frac{z}{2}\right|$$
 for all z in {z : |z| < 1}

(3) $|f(z)| \le 1/2$ for all z in $\{z : |z| < 1\}$ (4) It is possible that f(1/2) = 1/2.

DECEMBER – 2023

<u>PART – B</u>

- **114.** Let $\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ denote the upper half plane and let $f : \mathbb{C} \to \mathbb{C}$ be defined by $f(z) = e^{iz}$. Which one of the following statements is true?
 - (1) $f(\mathbb{H}) = \mathbb{C} \setminus \{0\}.$
 - (2) $f(\mathbb{H}) \cap \mathbb{H}$ is countable.
 - (3) $f(\mathbb{H})$ is bounded.
 - (4) f(\mathbb{H}) is a convex subset of \mathbb{C} .
- **115.** How many roots does the polynomial $z^{100} 50z^{30} + 40z^{10} + 6z + 1$ have in the open disc { $z \in \mathbb{C} : |z| < 1$ }? (1) 100 (2) 50 (3) 30 (4) 0
- **116.** Let f be a meromorphic function on an open set containing the unit circle C and its interior. Suppose that's f has no zeros and no poles on C and let n_p and n_0 denote the number of poles and zeros of f inside C respectively. Which one of the following is true?

(1)
$$\frac{1}{2\pi i} \int_C \frac{(zf)'}{zf} dz = n_0 - n_p + 1.$$

(2)
$$\frac{1}{2\pi i} \int_C \frac{(zf)'}{zf} dz = n_0 - n_p - 1.$$

(3)
$$\frac{1}{2\pi i} \int_C \frac{(zf)'}{zf} dz = n_0 - n_p.$$

(4) $\frac{1}{2\pi i} \int_C \frac{(zf)'}{zf} dz = n_p - n_0.$

117. Let $f : \mathbb{C} \to \mathbb{C}$ be a real-differentiable function. Define u, $v : \mathbb{R}^2 \to \mathbb{R}$ by u(x, y) =

Re f(x + iy) and v(x, y) = Im f(x + iy), x, y \in R

Let $\nabla u = (u_x, u_y)$ denote the gradient. Which one of the following is necessarily true?

- (1) For $c_1, c_2 \in \mathbb{C}$, the level curves $u = c_1$ and $v = c_2$ are orthogonal wherever they intersect.
- (2) $\nabla u \cdot \nabla v = 0$ at every point.
- (3) If f is an entire function, then $\nabla u \cdot \nabla v$ = 0 at every point.
- (4) If $\nabla u \cdot \nabla v = 0$ at ever point, then f is an entire function.

PART - C

- 118. Let $\Omega_1 = \{z \in \mathbb{C} : |z| < 1\}$ and $\Omega_2 = \mathbb{C}$. Which of the following statements are true?
 - (1) There exists a holomorphic surjective map f : $\Omega_1 \rightarrow \Omega_2$.
 - (2) There exists a holomorphic surjective map f : $\Omega_2 \rightarrow \Omega_1$.
 - (3) There exists a holomorphic injective map f : $\Omega_1 \rightarrow \Omega_2$.
 - (4) There exists a holomorphic injective map f : $\Omega_2 \rightarrow \Omega_1$.

119. For every
$$n \ge 1$$
, consider the entire function $p_n(z) = \sum_{k=0}^n \frac{z^k}{k!}$. Which of the following statements are true?

wing statements are

- (1) The sequence of functions $(p_n)_{n\geq 1}$ converges to an entire function uniformly on compact subsets of \mathbb{C} .
- (2) For all $n \ge 1$, p_n has a zero in the set $\{z \in \mathbb{C} : |z| \le 2023\}.$
- (3) There exists a sequence (z_n) of such that numbers complex $\lim |z_n| = \infty$ and $p_n(z_n) = 0$ for all $n \ge 1$.
- (4) Let S_n denote the set of all the zeros of p_n. If $a_n = \min |z|$, then $a_n \to \infty$ as $n \rightarrow \infty$.
- 120. Let X be an uncountable subset of $\mathbb C$ and let f : $\mathbb{C} \to \mathbb{C}$ be an entire function. Assume that for every $z \in X$, there exists an integer $n \ge 1$ such that $f^{(n)}(z) = 0$. Which of the following statements are necessarily true?

- (1) f = 0.
- (2) f is a constant function.
- (3) There exists a compact subset K of $\mathbb C$ such that $f^{-1}(K)$ is not compact.
- (4) f is a polynomial.

121. For an integer k, consider the contour

> $I_k = \int_{|z|=1} \frac{e^z}{z^k} dz$. Which integral of the

following statements are true?

(1) $I_k = 0$ for every integer k.

- (2) $I_k \neq 0$ if $k \ge 1$.
- (3) $|I_k| \le |I_{k+1}|$ for every integer k.
- (4) $\lim |I_{\nu}| = \infty$.

MOHAN INSTITUTE OF MATHEMATICS

Dedicated To Disseminating Mathematical Knowledge

ANSWERS

1. (1) 4. (2) 7. (3) 10. $(1,2,4)$ 13. (1) 16. $(1,2,3,4)$ 19. (3) 22. (3) 25. $(1,2,3,4)$ 28. (3) 31. $(2,3)$ 34. $(1,2,4)$ 37. (1) 40. $(3,4)$ 43. (4) 46. (3) 49. $(1,2,3)$ 52. (1) 55. $(1,3)$ 58. $(1,3)$ 61. (2) 64. $(1,3)$ 61. (2) 64. $(1,3)$ 67. (1) 70. $(1,4)$ 73. $(1,3)$ 76. (3) 79. $(1,2,4)$ 82. (2) 85. (1) 88. $(1,2)$ 91. (2) 94. (3) 97. $(2,3)$ 100. (4) 103. $(1,3)$ 106. (4) 109. (3) 112. $(2,4)$ 115. (3) 118. $(1,3)$ 121. (2)	2. (1) 5. $(1,2,3)$ 8. (3) 11. $(1,2,3,4)$ 14. (3) 17. $(1,2,3,4)$ 20. (2) 23. $(1,2,4)$ 26. $(1,2,4)$ 29. (4) 32. (2,4) 35. (3) 38. (3) 41. (2,4) 44. (3) 47. (1,3) 50. (1,3) 53. (4) 56. (1,2,3,4) 59. (3) 62. (4) 65. (2,4) 68. (2) 71. (1,2,3,4) 74. (4) 77. (3) 80. (1,2,3,4) 81. (2) 86. (4) 89. (3) 92. (4) 95. (2,3) 98. (2) 101. (4) 104. (1,2,3,4) 113. (1,2,3) 116. (1) 119. (1,3,4)	3. 6. $(1,3)$ 9. (2) 12. $(1,2,3)$ 15. (2) 18. $(2,3)$ 21. (2) 24. $(3,4)$ 27. (3) 30. (2) 33. $(1,2)$ 36. (2) 39. $(1,2)$ 42. $(2,4)$ 45. (4) 48. $(1,2,3,4)$ 51. (2) 54. (3) 57. $(1,2,4)$ 60. (1) 63. $(1,2)$ 66. (1) 69. (3) 72. $(2,4)$ 75. (3) 78. (1) 81. $(1,3,4)$ 84. (1) 87. (2) 90. (2) 93. (2) 96. $(1,2)$ 99. (4) 105. $(1,2,3)$ 105. $(1,2,3)$ 120. (4)
--	--	--