

MOHAN INSTITUTE OF MATHEMATICS *Dedicated To Disseminating Mathematical Knowledge*

INTEGRAL EQUATION ASSIGNMENT

DEC - 2014

1. Let $y:[0,\infty) \to \mathbb{R}$ be twice continuously differentiable and satisfy

$$
y(x) + \int_0^x (x - s) y(s) ds = x^3 / 6.
$$
 Then
1.
$$
y(x) = \frac{1}{6} \int_0^x s^3 \sin(x - s) ds
$$

2.
$$
y(x) = \frac{1}{6} \int_0^x s^3 \cos(x - s) ds
$$

3.
$$
y(x) = \int_0^x s \sin(x - s) ds
$$

4. $y(x) = \int_0^x s \cos(x - s) ds$

2. Let $u \in C^2([0,1])$ satisfy for some $\lambda \neq 0$ and $a \neq 0$

$$
u(x) + \frac{\lambda}{2} \int_0^1 |x - s| u(s) ds = ax + b.
$$

Then u also satisfies

1.
$$
\frac{d^2u}{dx^2} + \lambda u = 0
$$

2.
$$
\frac{d^2u}{dx^2} - \lambda u = 0
$$

3.
$$
\frac{du}{dx} - \frac{\lambda}{2} \int_0^1 \frac{x-s}{|x-s|} u(s) ds = a
$$

4.
$$
\frac{du}{dx} + \frac{\lambda}{2} \int_0^1 \frac{x-s}{|x-s|} u(s) ds = a
$$

JUNE-2015

3. The integral equation

$$
y(x) = \lambda \int_{0}^{1} (3x - 2)ty(t)dt
$$
, with λ as a

parameter, has

- 1. only one characteristic number
- 2. two characteristic numbers
- 3. more than two characteristic numbers 4. no characteristic number
-

4. For the integral equation
\n
$$
y(x) = 1 + x^3 + \int_0^x K(x,t)y(t)dt
$$
 with Kernel
\n
$$
K(x,t) = 2^{x-t},
$$
 the iterated Kernel K₃(x,t) is
\n1. $2^{x+t}(x-t)^2$
\n2. $2^{x+t}(x-t)^3$
\n3. $2^{x+t-1}(x-t)^2$
\n4. $2^{x+t-1}(x-t)^3$

DEC-2015

- **5.** The resolvent kernel R (x, t, λ) for the Volterra integral equation $\varphi(x) = x + \lambda \int_a^x$ $\varphi(x) = x + \lambda \int_a^x \varphi(s) ds$, is 1. $e^{\lambda(x+t)}$ 2. $e^{\lambda(x-t)}$ 3. $\lambda e^{(x+t)}$ 4. $e^{\lambda x}$
- **6.** Let $y : [0, \infty) \rightarrow [0, \infty)$ be a continuously differentiable function satisfying

$$
y(t) = y(0) + \int_0^t y(s) ds \text{ for } t \ge 0. \text{ Then}
$$

\n1. $y^2(t) = y^2(0) + \int_0^t y^2(s) ds.$
\n2. $y^2(t) = y^2(0) + 2 \int_0^t y^2(s) ds.$
\n3. $y^2(t) = y^2(0) + \int_0^t y(s) ds.$
\n4. $y^2(t) = y^2(0) + (\int_0^t y(s) ds)^2 + 2y(0) \int_0^t y(s) ds.$

7. Let λ_1 , λ_2 be the characteristic numbers and f_1 , f_2 be the corresponding eigen functions for the homogenous integral equation

$$
\varphi(x) - \lambda \int_{0}^{1} (2xt + 4x^{2}) \varphi(t) dt = 0.
$$
 Then
\n1. $\lambda_{1} \neq \lambda_{2}$
\n2. $\lambda_{1} = \lambda_{2}$
\n3. $\int_{0}^{1} f_{1}(x) f_{2}(x) dx = 0$
\n4. $\int_{0}^{1} f_{1}(x) f_{2}(x) dx = 1$

JUNE – 2016

PART – B

8. Consider the integral equation

 $y(x) = x^3 + \int_0^x \sin(x - t) y(t) dt, x \in$ $f(x) = x^3 + \int_0^x \sin(x-t)y(t)dt, x \in [0, \pi].$ Then the value of $y(1)$ is 1. 19/20 2. 1 3.17/20 4. 21/20

PART- C

9. The curve $y = y(x)$, passing through the point $(\sqrt{3},1)$ and defined by the following property (Voltera integral equation of the first kind) $\frac{(v)dv}{\sqrt{2}} = 4\sqrt{y},$ $\int_0^y \frac{f(y)dv}{\sqrt{y-y}} = 4\sqrt{y}$ *y v* $\frac{y f(v)dv}{\sqrt{u}} =$ $\int_0^y \frac{f(v)dv}{\sqrt{y-v}} = 4\sqrt{y}$, where $f(y) = \sqrt{1 + \frac{1}{y'^2}}$, *f y* $\overline{}$ $=$ $\sqrt{1+\frac{1}{a}}$, is the part of a

TUTE OF MATHEM *Dedicated To Disseminating Mathematical Knowledge*

1.Straight line. 2. Circle
3. Parabola. 4. Cycloid. 3. Parabola.

DEC-2016

10. Let ϕ satisfy $\phi(x) = f(x) + \int_0^x \sin(x - t) \phi(t) dt$. Then ϕ is given by

1.
$$
\phi(x) = f(x) + \int_0^x (x-t) f(t) dt
$$

\n2. $\phi(x) = f(x) - \int_0^x (x-t) f(t) dt$
\n3. $\phi(x) = f(x) - \int_0^x \cos(x-t) f(t) dt$

4.
$$
\phi(x) = f(x) - \int_0^x \sin(x - t) f(t) dt
$$

11. Which of the following are the characteristic numbers and the corresponding eigenfunctions for the Fredholm homogeneous equation whose kernel is

$$
K(x,t) = \begin{cases} (x+1)t, & 0 \le x \le t \\ (t+1)x, & t \le x \le 1 \end{cases}
$$
\n
$$
1.1, e^{x}
$$
\n
$$
2. -\pi^{2}, \pi \sin \pi x + \cos \pi x
$$
\n
$$
3. -4\pi^{2}, \pi \sin \pi x + \pi \cos 2\pi x
$$
\n
$$
4. -\pi^{2}, \pi \cos \pi x + \sin \pi x
$$

12. The integral equation

$$
\phi(x) - \frac{2}{\pi} \int_0^{\pi} \cos(x + t) \phi(t) dt = f(x)
$$

has infinitely many solutions if
1. f(x) = cosx 2. f(x) = cos 3x
3. f(x) = sin x 4. f(x) = sin 3x

JUNE – 2017

13. Let $\phi(x)$ be the solution of

$$
\int_0^x e^{x-t} \phi(t) dt = x, \quad x > 0.
$$
 Then $\phi(1)$ equals
1.-1 2.0 3.1 4.2

14. Let y(x) be the solution of the integral
\nequation
$$
y(x) = x - \int_{0}^{x} xt^2 y(t) dt, x > 0
$$
.
\nThen the value of the function y(x) at
\n $x = \sqrt{2}$ is equal to
\n1. $\frac{1}{\sqrt{2e}}$
\n2. $\frac{e}{2}$
\n3. $\frac{\sqrt{2}}{e^2}$
\n4. $\frac{\sqrt{2}}{e}$

15. The solutions for
$$
\lambda = -1
$$
 and $\lambda = 3$ of the integral equation
\n
$$
y(x) = 1 + \lambda \int_{0}^{1} K(x, t) y(t) dt, \text{ where}
$$
\n
$$
K(x, t) = \begin{cases} \cosh x \sinh t, & 0 \le x \le t \\ \cosh t \sinh t, & t \le x \le 1 \end{cases}
$$
\nrespectively,
\n1. $-\frac{x^2}{2} + \frac{3}{2} - \tanh 1$ and
\n
$$
\frac{1}{4} \left(\frac{3 \cos 2x}{\cos 2 - 2 \sin 2 \tanh 1} + 1 \right)
$$
\n2. $-\frac{x^2}{2} + \frac{3}{2} - \tanh 1$ and
\n
$$
\frac{1}{4} \left(\frac{3 \cos 2x}{\cosh 2 - 2 \sinh 2 \tanh 1} + 1 \right)
$$
\n3. $\frac{x^2}{2} + \frac{3}{2} - \tanh 1$ and
\n
$$
\frac{1}{4} \left(\frac{3 \cos 2x}{\cosh 2 - 2 \sinh 2 \tanh 1} - 1 \right)
$$
\n4. $\frac{x^2}{2} + \frac{3}{2} - \tanh 1$ and
\n
$$
\frac{1}{4} \left(\frac{3 \cos 2x}{\cos 2 - 2 \sin 2 \tanh 1} - 1 \right)
$$
\n10. $\underline{J} \underline{U} \underline{N} = -2018$

PART - B

16. The resolvent kernel for the integral *x*

equation
$$
\phi(x) = x^2 + \int_0^x e^{t-x} \phi(t) dt
$$
 is
\n1. e^{t-x}
\n2. 1
\n3. e^{x-t}
\n4. $x^2 + e^{x-t}$

PART - C

17. The values of λ for which the following equation has a non-trivial solution

$$
\phi(x) = \lambda \int_0^{\pi} K(x,t) \phi(t) dt, 0 \leq x \leq \pi,
$$

where

$$
K(x,t) = \begin{cases} \sin x \cos t, & 0 \le x \le t \\ \cos x \sin t, & t \le x \le \pi \end{cases}
$$
 are
1. $\left(n + \frac{1}{2}\right)^2 - 1, n \in \mathbb{N}$

DHAN INSTITUTE OF MATHEM *Dedicated To Disseminating Mathematical Knowledge*

2. $n^2 - 1$, $n \in \mathbb{N}$ 3. $\frac{1}{2}(n+1)^2-1$, 2 $\frac{1}{2}(n+1)^2 - 1, n \in \mathbb{N}$ 4. $\frac{1}{2}(2n+1)^2-1$, 2 $\frac{1}{2}(2n+1)^2 - 1, n \in \mathbb{N}$

18. Consider the integral equation

 $\phi(x) = \lambda \int_0^{\pi} [\cos x \cos t - 2 \sin x \sin t] \phi(t) dt$ 0

 $+\cos 7x, 0 \le x \le \pi$

Which of the following statements are true?

1. For every $\lambda \in \mathbb{R}$, a solution exists

2. There exists $\lambda \in \mathbb{R}$ such that solution does not exist

3. There exists $\lambda \in \mathbb{R}$ such that there are more than one but finitely many solutions

4. There exists $\lambda \in \mathbb{R}$ such that there are infinitely many solutions

DECEMBER – 2018

PART - B

19. If φ is the solution of

$$
\int_{0}^{x} (1 - x^{2} + t^{2}) \varphi(t) dt = \frac{x^{2}}{2}, \text{ then } \varphi(\sqrt{2}) \text{ is}
$$

equal to
1. $\sqrt{2}e^{\sqrt{2}}$
2. $\sqrt{2}e^{2}$
3. $\sqrt{2}e^{2\sqrt{2}}$
4. $2e^{4}$

PART-C

20. If φ is the solution of $\varphi(x) = 1 - 2x - 4x^2 +$ \int_0^x \int_{0}^{∞} [3 + 6 (x – t) – 4 (x – t)²] φ (t) dt, then φ (log2) is equal to 1.2 2. 4
3. 6 4. 8 3.6

21. A characteristic number and the corresponding eigenfunction of the homogenous Fredholm integral equation with kernel $\overline{\mathcal{L}}$ ↑ \int $-1, t \leq x \leq$ $-1, 0 \le x \le$ $=$ $(x-1), t \leq x \leq 1$ $(t-1),0$ (x, t) $t(x-1), t \leq x$ $x(t-1), 0 \le x \le t$ $K(x,t)$ are 1. $\lambda - \pi^2$, $\varphi(x) = \sin \pi x$ 2. $\lambda = -2\pi^2$, $\varphi(x) = \sin 2\pi x$ 3. $\lambda = -3\pi^2$, $\varphi(x) = \sin 3\pi x$

4. $\lambda = -4\pi^2$, $\varphi(x) = \sin 2\pi x$

JUNE – 19

PART – B

- **22.** If y is a solution of $y(x) - \int_0^x (x - t) y(t) dt = 1$, then which of the following is true? 1. y is bounded but not periodic in ℝ 2. y is periodic in ℝ 3. $\int_{\mathbb{R}} y(x) dx < \infty$ 4. $\int_{\mathbb{R}} \frac{dx}{y(x)} < \infty$ **PART – C**
- **23.** Consider the integral equation 1 *e*

$$
\varphi(x) - \frac{e}{2} \int_{-1}^{1} x e^t \, \varphi(t) \, dt = f(x).
$$
 Then

- 1. there exists a continuous function f : [-1, 1] \rightarrow (0, ∞) for which solution exists
- 2. there exists a continuous function f : $[-1, 1] \rightarrow (-\infty, 0)$ for which solution exists
- 3. for $f(x) = e^{-x} (1 3x^2)$, a solution exists
- 4. for $f(x) = e^{-x^2}(x + x^3 + x^5)$, a solution exists

DECEMBER – 2019

PART - B

24. Let
$$
\phi
$$
 be the solution of
\n
$$
\phi(x) = 1 - 2x - 4x^2 + \int_0^x [3 + 6(x - t) - 4(x - t)^2] \phi(t) dt.
$$
\nThen $\phi(1)$ is equal to
\n1. e^{-1}
\n3. e^{2}
\n4. e^{2}

PART – C

25. Assume that h_1 , h_2 , g_1 and $g_2 \in C$ ([a, b]). Let $\phi(x) = f(x)$

$$
+\lambda \int_a^b [h_1(t)g_1(x) + h_2(t)g_2(x)]\phi(t) dt
$$

be an integral domain. Consider the following statements:

 S_1 : If the given interval equation has a solution for some $f \in C([a, b])$, then

OHAN INSTITUTE OF MATHEMAT *Dedicated To Disseminating Mathematical Knowledge*

$$
\int_a^b f(t) g_1(t) dt = 0 = \int_a^b f(t) g_2(t) dt.
$$

 S_2 : The given integral equation has a unique solution for every $f \in C([a,$ b]) if λ is not a characteristic number of the corresponding homogeneous equation.

Then

- 1. Both S_1 and S_2 are true
- 2. S_1 is true but S_2 is false
- 3. S_1 is false but S_2 is true
- 4. Both S_1 and S_2 are false

26. The integral equation

$$
\phi(x) = 1 + \frac{2}{\pi} \int_0^{\pi} (\cos^2 x) \phi(t) dt
$$

has

- 1. no solution
- 2. unique solution 3. more than one but finitely many
- solutions 4. infinitely many solutions

JUNE – 20

PART – B

27. The solution of the Fredholm integral equation

$$
y(s) = s + 2 \int_0^1 (st^2 + s^2 t) y(t) dt
$$
 is
1. y(s) = -(50s + 40s²)
2. y(s) = (30s + 15s²)
3. y(s) = -(30s + 40s²)
4. y(s) = (60s + 50s²)

PART – C

28. For the Fredholm integral equation

$$
y(s) = \lambda \int_0^1 e^s e^t y(t) dt
$$

Which of the following statements are true?

1. It has a non-trivial solution satisfying

$$
\int_0^1 e^t y(t) dt = 0
$$

2. Only the trivial solution satisfies $\int_0^1 e^t y(t) dt = 0$

$$
3. \quad 30
$$
\n3. It has non-trivial solution for all $\lambda \neq 0$

\n4. It has non-trivial solutions only if

$$
\lambda = \frac{2}{e^2 - 1} \text{ and } \int_0^1 e^t y(t) dt \neq 0
$$

JUNE – 21

PART – B

29. Consider the integral equation

 $\int_0^x (x-t) u(t) dt = x; x \ge 0$ for continuous functions u defined on $[0, \infty)$. The equation has

- 1. A unique bounded solution
- 2. No solution
- 3. More than one solution u such that $|u(x)| \leq C(1 + |x|)$ for some constant C
- 4. A unique solution u such that $|u(x)| \le$ $C(1 + |x|)$ for some constant C

PART – C

30. Let $K(x, y)$ be a kernel in $[0, 1] \times [0, 1]$, defined as $K(x, y) = \sin(2\pi x) \sin(2\pi y)$. Consider the integral operator

$$
K(u)(x) = \int_0^1 u(y) K(x, y) dy
$$
 where $u \in$

C ([0, 1]). Which of the following assertions on K are true?

- 1. The null space of K is infinite dimensional
- 2. $\int_0^1 v(x) K(u)(x) dx = \int_0^1$ 0 1 $v(x) K(u)(x) dx = \int_0^1 K(v)(x) u(x) dx$ for all $u, v \in C([0, 1])$
	-
- 3. K has no negative eigenvalue
4. K has an eigenvalue greater the 4. K has an eigenvalue greater than 3/4

JUNE – 22

PART – B

31. For any two continuous functions

f, $g : \mathbb{R} \to \mathbb{R}$ define

$$
f * g(t) \int_0^t f(s) g(t-s) ds
$$
. Which of the

following is the value of $f * g(t)$ when $f(t) =$ exp (-t) and $g(t) = \sin(t)$.

1.
$$
\frac{1}{2} [\exp(-t) + \sin(t) - \cos(t)]
$$

2.
$$
\frac{1}{2} [-\exp(-t) + \sin(t) - \cos(t)]
$$

3.
$$
\frac{1}{2} [\exp(-t) - \sin(t) - \cos(t)]
$$

4.
$$
\frac{1}{2} [\exp(-t) + \sin(t) + \cos(t)]
$$

 $\overline{}$

MOHAN INSTITUTE OF MATHEMATICS *Dedicated To Disseminating Mathematical Knowledge*

PART – C

32. Let g be the solution of the Volterra type integral equation $g(s) = 1 + \int_0^s (s-t) g(t) dt$; for all $s \ge 0$. What are the possible values of $g(1)$?

1. 2e
\n2.
$$
e -
$$

\n3. $e + \frac{1}{e}$
\n4. $\frac{2}{e}$

33. Consider the following system of Integral

$$
\varphi_1(x) = \sin x + \int_0^x \varphi_2(t) dt
$$

$$
\varphi_2(x) = 1 - \cos x - \int_0^x \varphi_1(t) dt
$$

Which of the following statements are true 1. φ_1 vanishes atmost countably many

e

1

- points
- 2. φ_1 vanishes at uncountably many points
- 3. φ vanishes at atmost countably many points
- 4. φ_2 vanishes at uncountably many points

JUNE – 23

PART – B

34. For the unknown y: $[0, 1] \rightarrow \mathbb{R}$, consider the following two-point boundary value problem:

$$
\begin{cases} y''(x) + 2y(x) = 0 & \text{for } x \in (0,1), \\ y(0) = y(1) = 0. \end{cases}
$$

It is given that the above boundary value problem corresponds to the following integral equation:

$$
y(x) = 2 \int_0^1 K(x,t) y(t) dt
$$
 for $x \in [0,1]$.

Which of the following is the kernel K(x, t)?

1.
$$
K(x,t) = \begin{cases} t(1-x) & \text{for } t < x \\ x(1-t) & \text{for } t > x \end{cases}
$$
\n2.
$$
K(x,t) = \begin{cases} t^2(1-x) & \text{for } t < x \\ x^2(1-t) & \text{for } t > x \end{cases}
$$
\n3.
$$
K(x,t) = \begin{cases} \sqrt{t}(1-x) & \text{for } t < x \\ \sqrt{x}(1-t) & \text{for } t > x \end{cases}
$$

4.
$$
K(x,t) = \begin{cases} \sqrt{t^3}(1-x) & \text{for } t < x \\ \sqrt{x^3}(1-t) & \text{for } t > x \end{cases}
$$

PART – C

35. Let $\lambda_1 < \lambda_2$ be two real characteristic numbers for the following homogeneous integral equation:

$$
\varphi(x) = \lambda \int_0^{2\pi} \sin(x+t) \varphi(t) dt;
$$

and let $\mu_1 < \mu_2$ be two real characteristic numbers for the following homogeneous integral equation:

$$
\psi(x) = \mu \int_0^{\pi} \cos(x+t) \psi(t) dt.
$$

Which of the following statements are true?

1.
$$
\mu_1 < \lambda_1 < \lambda_2 < \mu_2
$$
\n2. $\lambda_1 < \mu_1 < \mu_2 < \lambda_2$

3.
$$
|\mu_1 - \lambda_1| = |\mu_2 - \lambda_2|
$$

$$
4. |\mu_1 - \lambda_1| = 2|\mu_2 - \lambda_2|
$$

DECEMBER – 23

PART – B

36. The value of λ for which the integral equation

$$
y(x) = \lambda \int_0^1 x^2 e^{x+t} y(t) dt
$$

has a non-zero solution, is

(1)
$$
\frac{4}{1+e^2}
$$

\n(2)
$$
\frac{2}{1+e^2}
$$

\n(3)
$$
\frac{4}{e^2-1}
$$

\n(4)
$$
\frac{2}{e^2-1}
$$

PART – C

37. Consider the following Fredholm integral equation

$$
y(x) - 3\int_0^1 tx \, y(t) \, dt = f(x),
$$

where $f(x)$ is a continuous function defined on the interval [0, 1]. Which of the following choices for f(x) have the property

TUTE OF MATHEMATICS

Dedicated To Disseminating Mathematical Knowledge

that the above integral equation admits at least one solution? 1

(1)
$$
f(x) = x^2 - \frac{1}{2}
$$

\n(2) $f(x) = e^x$
\n(3) $f(x) = 2 - 3x$
\n(4) $f(x) = x - 1$

38. Let y be the solution to the Volterra integral equation

$$
y(x) = e^x + \int_0^x \frac{1+x^2}{1+t^2} y(t) dt.
$$

Then which of the following statements are true?

(1)
$$
y(1) = \left(1 + \frac{\pi}{4}\right)e
$$

\n(2) $y(1) = \left(1 + \frac{\pi}{2}\right)e$
\n(3) $y(\sqrt{3}) = \left(1 + \frac{3\pi}{4}\right)e^{\sqrt{3}}$
\n(4) $y(\sqrt{3}) = \left(1 + \frac{4\pi}{3}\right)e^{\sqrt{3}}$

MOHAN INSTITUTE OF MATHEMATICS

Dedicated To Disseminating Mathematical Knowledge

ANSWERS

