

MOHAN INSTITUTE OF MATHEMATICS

Dedicated To Disseminating Mathematical Knowledge

- **6.** Let P be a 2×2 complex matrix such that P*P is the identity matrix, where P* is the conjugate transpose of P. Then the eigenvalues of P are
	- 1. real
	- 2. complex conjugates of each other
	- 3. reciprocals of each other
	- 4. of modulus 1

PART – C

- **7.** Let A be a real $n \times n$ orthogonal matrix, that is, $A^tA = AA^t = I_n$, the $n \times n$ identity matrix. Which of the following statements are necessarily true?
	- 1. $\langle Ax, Ay \rangle = \langle x, y \rangle \ \forall x, y \in \mathbb{R}^n$
	- 2. All eigenvalues of A are either +1 or -1.
	- 3. The rows of A form an orthonormal basis of \mathbb{R}^n

 $\overline{}$

- 4. A is diagonalizable over ℝ.
- **8.** Which of the following matrices have Jordan

canonical form equal to $\begin{vmatrix} 0 & 0 & 0 \end{vmatrix}$ $(0 \ 1 \ 0)$ $\left| \right|$ L 0 0 0

9. Let A be a 3×4 and b be a 3×1 matrix with integer entries. Suppose that the system Ax=b has a complex solution. Then

- 1. Ax=b has an integer solution
- 2. Ax=b has a rational solution
- 3. The set of real solutions to Ax=0 has a basis consisting of rational solutions.
- 4. If b≠0, then A has positive rank.

diagonalizable over ℝ?

INSTITUTE OF MATHEMA *Dedicated To Disseminating Mathematical Knowledge*

10. Let f be a non-zero symmetric bilinear form on \mathbb{R}^3 . Suppose that there exists linear transformations $T_i: \mathbb{R}^3 \to \mathbb{R}$, i = 1,2 such that for all α , $\beta \in \mathbb{R}^3$, f (α, β) = T₁ (α) T₂ (β) . Then 1. rank f=1

- 2. dim { $\beta \in \mathbb{R}^3$: $f(\alpha, \beta) = 0$ for all $\alpha \in \mathbb{R}^3$ } = 2
- 3. f is positive semi-definite or negative semi- definite.
- 4. $\{\alpha: f(\alpha,\alpha)=0\}$ is a linear subspace of dimension 2

$$
A = \begin{pmatrix} 5 & 9 & 8 \\ 1 & 8 & 2 \\ 9 & 1 & 0 \end{pmatrix} \text{ satisfies}
$$

- 1. A is invertible and the inverse has all integer entries.
- 2. det(A) is odd.

11. The matrix

- 3. det(A) is divisible by 13.
- 4. det(A) has at least two prime divisors.
- **12.** Let A be 5×5 matrix and let B be obtained by changing one element of A. Let r and s be the ranks of A and B respectively. Which of the following statements is/are correct? 1. $s \leq r+1$ 2. $r-1 \leq s$
	- 3. $s = r 1$ 4. $s \neq r$
- **13.** Let $M_n(K)$ denote the space of all $n \times n$ matrices with entries in a field K. Fix a nonsingular matrix $A = (A_{ij}) \in M_n(K)$, and consider the linear map

 $T: M_n(K) \to M_n(K)$ given by $T(X)=AX$. Then

- 1. trace (T)=n $\sum_{i=1}^{n}$ $\int_{i=1}^n A_{ii}$ 2. trace(T) = $\sum_{i=1}^{n} \sum_{j=1}^{n}$ *n* $\sum_{j=1}^n A_{ij}$
- *i* 3. rank of T is n^2
- 4. T is non singular
- **14.** For arbitrary subspaces U,V and W of a finite dimensional vector space, which of the following hold
	- 1. $U \cap (V+W) \subset U \cap V+U \cap W$
	- 2. $U \cap (V+W) \supset U \cap V+U \cap W$
	- 3. $(U \cap V) + W \subset (U+W) \cap (V+W)$
	- 4. $(U \cap V) + W \supset (U+W) \cap (V+W)$
- **15.** Let A be 4×7 real matrix and B be a 7×4 real matrix such that $AB = I_4$, where I_4 is

the 4×4 identity matrix. Which of the following is/are always true?

- 1. rank (A)=4
- 2. rank (B)=7
- 3. nullity (B)=0
- 4. BA= I_7 , where I_7 is the 7×7 identity matrix
- **16.** Let ℝ[x] denote the vector space of all real polynomials. Let D : ℝ[x] $\rightarrow \mathbb{R}$ [x] denote the

map
$$
Df = \frac{df}{dx}
$$
, $\forall f$. Then,

- *dx* 1. D is one-one
- 2. D is onto
- 3. There exists $E : \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ so that $D(E(f)) = f, \forall f.$
- 4. There exists E: ℝ[x] → ℝ[x] so that $E(D(f)) = f, \forall f.$
- **17.** Which of the following are eigenvalues of the

- **18.** Let $A = \begin{bmatrix} x & y \\ -y & x \end{bmatrix}$ J \setminus $\overline{}$ \setminus ſ \overline{a} $=$ *y x x y* $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, where $x, y \in \mathbb{R}$ such that $x^2 + y^2 = 1$. Then we must have
	- 1. For any $n \ge 1$, $A^n = \begin{bmatrix} 1 & 0 & \cos \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ $\bigg)$ $\left(\right)$ $\overline{}$ \setminus ſ \overline{a} $=\begin{vmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{vmatrix}$ θ sin θ $\sin \theta$ cos $A^n = \begin{pmatrix} \cos \theta & \sin \theta \\ \cos \theta & \sin \theta \end{pmatrix}$
		- where $x = cos(\theta/n), y = sin(\theta/n)$
	- 2. $tr(A) \neq 0$

$$
3. \quad A^t = A^{-1}
$$

4. A is similar to a diagonal matrix over $\mathbb C$

JUNE – 2015

PART – B

19. Let V be the space of twice differentiable functions on ℝ satisfying f " $-2f' + f = 0$.

OHAN INSTITUTE OF MATHEMAT *Dedicated To Disseminating Mathematical Knowledge*

Define T: $V \to \mathbb{R}^2$ by $T(f) = (f'(0), f(0)).$ Then T is 1. one –to-one and onto 2. one-to-one but not onto 3. onto but not one-to-one 4. neither one-to-one nor onto **20.** The row space of a 20×50 matrix A has

- dimension 13. What is the dimension of the space of solutions of $Ax = 0$? 1. 7 2. 13
3. 33 4. 37 3. 33
- **21.** Let A,B be $n \times n$ matrices. Which of the following equals trace(A^2B^2 B²)? 1. (trace(AB))² 2. trace(AB^2A) 3. trace $((AB)^2)$) 4. trace(BABA)
- **22.** Given a 4x4 real matrix A, let T: $\mathbb{R}^4 \rightarrow \mathbb{R}^4$ be the linear transformation defined by $Tv = Av$, where we think of \mathbb{R}^4 as the set of real 4x1 matrices. For which choices of A given below, do Image(T) and Image(T^2) have respective dimensions 2 and 1? (denotes a non zero entry)

1. $A=$ $\overline{}$ $\begin{vmatrix} 0 & 0 & 0 & * \end{vmatrix}$ $\overline{}$ $\overline{}$ J $\overline{}$ L \mathbf{r} $\begin{array}{|ccc|}\n0 & 0 & * & * \n\end{array}$ 0 0 0 0 $\begin{bmatrix} 0 & 0 & * & * \end{bmatrix}$ 2. $A =$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ J Ω \mathbf{r} $\begin{array}{|ccc|} 0 & 0 & 0 \end{array}$ \mathbf{r} $\begin{vmatrix} 0 & 0 & * & 0 \end{vmatrix}$ 0 0 0 $\begin{bmatrix} 0 & 0 & * & 0 \end{bmatrix}$ × × 3. $A =$ $\overline{}$ $\begin{vmatrix} 0 & 0 & 0 & * \end{vmatrix}$ $\overline{}$ $\overline{}$ J $\begin{vmatrix} 0 & 0 & 0 & 0 \end{vmatrix}$ L L $\begin{array}{|ccc|} 0 & 0 & 0 & 0 \end{array}$ $\begin{bmatrix} 0 & 0 & * & 0 \end{bmatrix}$ 4. *A* $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ J $\begin{vmatrix} 0 & 0 & 0 & 0 \end{vmatrix}$ L \mathbf{r} L $\begin{array}{|ccc|} 0 & 0 & 0 & 0 \end{array}$ L $*$ * $*$ * 0 0 0 0

23. Let T be a 4×4 real matrix such that $T^4 = 0$. Let $k_i = \text{dim } \text{Ker} T^i$ for $1 \leq i \leq 4$. Which of the following is NOT a possibility for the sequence $k_1 \leq k_2 \leq k_3 \leq k_4$? $1.3 \leq 4 \leq 4 \leq 4$. 2. $1 \leq 3 \leq 4 \leq 4$. $3.2 \leq 4 \leq 4 \leq 4$. $4.2 \leq 3 \leq 4 \leq 4$.

24. Which of the following is a linear transformation from \mathbb{R}^3 to \mathbb{R}^2 ?

(a)
$$
f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ x+y \end{pmatrix}
$$
 (b) $g\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} xy \\ x+y \end{pmatrix}$
\n(c) $h\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z-x \\ x+y \end{pmatrix}$
\n1. Only f.
\n2. Only g.

- 3. Only h.
- 4. all the transformations f,g and h.

PART – C

- **25.** Let A be an m×n matrix of rank n with real entries. Choose the correct statement.
	- 1. $Ax = b$ has a solution for any b.
	- 2. $Ax = 0$ does not have a solution.
	- 3. If $Ax = b$ has a solution, then it is unique.
	- 4. $y'A = 0$ for some nonzero y, where y' denotes the transpose of the vector y.
- **26.** Let F: $\mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$ be the function $F(x,y) = < Ax, y>$ where \langle , \rangle is the standard

inner product of \mathbb{R}^n and A is a nxn real matrix. Here D denotes the total derivative. Which of the following statements are correct?

- 1. (DF(x, y))(u, v) = $\langle Au, y \rangle + \langle Ax, v \rangle$
- 2. $(DF(x,y))(0,0) = 0.$
- 3. DF(x,y) may not exist for some $(x,y) \in \mathbb{R}^n \times \mathbb{R}^n$
- 4. DF(x,y) does not exist at $(x,y) = (0,0)$.

27. Let f: ℝⁿ→ℝⁿ be a continous function such that \int_{R^n} $|f(x)| dx < \infty$. Let A be a real nxn invertible matrix and for $x,y \in \mathbb{R}^n$, let $\langle x, y \rangle$ denote the standard inner product in R^n . Then $\int_{R^n} f(Ax)e^{i\langle y,x \rangle} dx =$ $(Ax)e^{i(y,x)}$ *A* $\int_{a}^{b} f(x)e^{i\left(\left(A^{-1}\right)^{T} y,x\right)} \frac{dx}{|x|^{T}}$ *T R* $i((A^{-1})^T y, x)$ det 1. $\int_{R^n} f(x) e^{i \left((A^{-1})^T y, 0 \right)}$

2.
$$
\int_{R^n} f(x)e^{i\langle A^T y, x \rangle} \frac{dx}{|\det A|}
$$

3.
$$
\int_{R^n} f(x)e^{i\langle (A^T)^{-1} y, x \rangle} dx
$$

TITUTE OF MATHEMA *Dedicated To Disseminating Mathematical Knowledge*

 $\int_{R^n} f(x)e^{i\left\langle A^{-1}y,x\right\rangle} \frac{dx}{|\det A|}$ $i(A^{-1}y, x)$ 4. $\int_{R^n} f(x)e^{i\left\langle A^{-1}y,x\right\rangle} \frac{dx}{|\text{det}}$

28. Let S be the set of 3×3 real matrices A with $\overline{}$ $\begin{vmatrix} 1 & 0 & 0 \end{vmatrix}$ $A^TA=\begin{bmatrix}0&0&0\end{bmatrix}$. Then the set S contains

$$
A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$

- $\overline{}$ Ľ 1. a nilpotent matrix.
- 2. a matrix of rank one.
- 3. a matrix of rank two.
- 4. a non-zero skew-symmetric matrix.
- **29.** An n×n complex matrix A satisfies $A^k = I_n$, the n×n identity matrix, where k is a positive integer > 1. Suppose 1 is not an eigenvalue of A. Then which of the following statements are necessarily true? 1. A is diagonalizable. 2. $A+A^2$ +...+ A^{k-1} = O, the nxn zero matrix) +…+ $tr(A^{k-1}) = -n$

3. tr(A) + tr(A² 4. A -1 + A-2 +…+ A-(k-1) = -Iⁿ

30. Let S: $\mathbb{R}^n \rightarrow \mathbb{R}^n$ be given by S(v) = αv for a fixed $\alpha \in \mathbb{R}$, $\alpha \neq 0$.

> Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation such that $B = \{v_1, ..., v_n\}$ is a set of linearly independent eigen vectors of T. Then

- 1. The matrix of T with respect to B is diagonal.
- 2. The matrix of (T S) with respect to B is diagonal.
- 3. The matrix of T with respect to B is not necessarily diagonal, but is upper triangular.
- 4. The matrix of T with respect to B is diagonal but the matrix of (T-S) with respect to B is not diagonal.
- **31.** Let $p_n(x) = x^n$ for $x \in \mathbb{R}$ and let $\wp = \text{span}$ ${p_0, p_1, p_2, ...}$. Then
	- 1. \wp is the vector space of all real valued continuous functions onℝ.
	- 2. \wp is a subspace of all real valued
	- continuous functions on ℝ. 3. $\{p_0, p_1, p_2, \ldots\}$ is a linearly independent set in vector space of all continuous functions on ℝ.
	- 4. Trigonometric functions belong to \wp .

32. Let
$$
A = \begin{bmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{bmatrix}
$$
 be a 3x3 matrix where

a,b,c,d are integers. Then, we must have:

- 1. If $a \neq 0$, there is a polynomial $p \in \mathbb{Q}[x]$ such that p(A) is the inverse of A.
- 2. For each polynomial $q \in \mathbb{Z}[x]$, the matrix

$$
q(A) = \begin{bmatrix} q(a) & q(b) & q(c) \\ 0 & q(a) & q(d) \\ 0 & 0 & q(a) \end{bmatrix}
$$

- 3. If $A^n = O$ for some positive integer n, then $A^3 = O$.
- 4. A commutes with every matrix of the $|a' \quad 0 \quad c'|$

form
$$
\begin{bmatrix} a & 0 & c \\ 0 & a' & 0 \\ 0 & 0 & a' \end{bmatrix}
$$
.

33. Which of the following are subspaces of vector space \mathbb{R}^3 ?

- 1. $\{(x,y,z): x + y = 0\}$ 2. $\{(x,y,z): x - y = 0\}$ 3. $\{(x,y,z): x + y = 1\}$ 4. $\{(x,y,z): x - y = 1\}$
- **34.** Consider non-zero vector spaces V_1 , V_2 , V_3 , V_4 and linear transformations T₁: $V_1 \rightarrow V_2$, T_2 : $V_2 \rightarrow V_3$, T_3 : $V_3 \rightarrow V_4$ such that Ker(T₁) = {0}, Range(T₁) = Ker(T₂), Range(T₂) = $Ker(T_3)$, Range(T₃) = V_4 . Then

1.
$$
\sum_{i=1}^{4} (-1)^{i} \dim V_{i} = 0
$$

2.
$$
\sum_{i=2}^{4} (-1)^{i} \dim V_{i} > 0
$$

3.
$$
\sum_{i=1}^{4} (-1)^{i} \dim V_{i} < 0
$$

4.
$$
\sum_{i=1}^{4} (-1)^{i} \dim V_{i} \neq 0
$$

- **35.** Let A be an invertible 4×4 real matrix. Which of the following are NOT true?
	- 1. Rank $A = 4$.
	- 2. For every vector $b \in \mathbb{R}^4$, Ax = b has exactly one solution.
	- 3. dim (nullspace A) \geq 1.
	- 4. 0 is an eigenvalue of A.
- **36.** Let \underline{u} be a real nx1 vector satisfying $\underline{u'u}$ =1, where u' is the transpose of u. Define $A= 1 - 2uu'$ where I is the nth order identity matrix. Which of the following statements are true?

1. A is singular
3. Trace(A) = n-2
4.
$$
A^2 = I
$$

 $\overline{}$ 4

IOHAN INSTITUTE OF MATHEMATIC *Dedicated To Disseminating Mathematical Knowledge*

DEC – 2015

PART – B

- **37.** Let S denote the set of all the prime numbers p with the property that the matrix $\begin{bmatrix} 79 & 23 & 59 \end{bmatrix}$ $\overline{}$ $\begin{vmatrix} 29 & 31 & 0 \end{vmatrix}$ has an inverse in the field $\overline{}$ 91 31 0 ℤ/pℤ. Then 1. $S = \{31\}$ 2. $S = \{31, 59\}$ 3. $S = \{7, 13, 59\}$ 4. S is infinite **38.** For a positive integer n, let P_n denote the vector space of polynomials in one variable x with real coefficients and with degree \leq n. Consider the map T: $P_2 \rightarrow P_4$ defined by $T(p(x)) = p(x^2)$. Then 1. T is a linear transformation and dim range $(T) = 5$. 2. T is a linear transformation and dim range $(T) = 3$. 3. T is a linear transformation and dim range $(T) = 2$. 4. T is not a linear transformation. **39.** Let A be a real 3 x 4 matrix of rank 2. Then the rank of A^tA , where A^t denotes the transpose of A, is: 1. exactly 2 2. exactly 3 3. exactly 4 4. at most 2 but not necessarily 2 **40.** Consider the quadratic form $Q(v) = v^tAv$, where $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, v = (x, y, z, w)$ $0 \quad 0 \quad 1 \quad 0$ 0 0 0 1 0 1 0 0 $\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$ $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, v = (x, y, z, w)$ $\overline{}$ $\overline{}$ $\overline{}$ \rfloor \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} L $=$ Then 1. Q has rank 3. 2. $xy + z^2 = Q(Pv)$ for some invertible 4 x 4 real matrix P 3. $xy + y^2 + z^2 = Q(Pv)$ for some invertible 4 x 4 real matrix P 4. $x^2 + y^2 - zw = Q(Pv)$ for some invertible 4 x 4 real matrix P. **41.** If A is a 5 x 5 real matrix with trace 15 and if 2 and 3 are eigenvalues of A, each with algebraic multiplicity 2, then the determinant of A is equal to 1. 0 2. 24 3. 120 4. 180
- **42.** Let $A \neq I_n$ be an n x n matrix such that $A^2 =$ A, where I_n is the identity matrix of order n. Which of the following statements is false? 1. $(I_n - A)^2 = I_n - A$.
	- 2. Trace (A) = Rank (A) .
	- 3. Rank (A) + Rank ($I_n A$) = n.
	- 4. The eigenvalues of A are each equal to 1.

PART – C

- **43.** Let A and B be n x n matrices over \mathbb{C} . Then, 1. AB and BA always have the same set of
	- eigenvalues. 2. If AB and BA have the same set of eigen-
	- values then $AB = BA$.
	- 3. If A^{-1} exists then AB and BA are similar.
	- 4. The rank of AB is always the same as the rank of BA.
- **44.** Let A be an m x n real matrix and $b \in \mathbb{R}^m$ with $b \neq 0$.
	- 1. The set of all real solutions of $Ax = b$ is a vector space.
	- 2. If u and v are two solutions of $Ax = b$, then $\lambda u + (1 - \lambda)v$ is also a solution of $Ax = b$, for any $\lambda \in \mathbb{R}$.
	- 3. For any two solutions u and v of $Ax = b$, the linear combination $\lambda u + (1 - \lambda) v$ is also a solution of $Ax = b$ only when $0 \le \lambda$ ≤ 1 .
	- 4. If rank of A is n, then $Ax = b$ has at most one solution.
- **45.** Let A be an n x n matrix over ℂ such that every nonzero vector of \mathbb{C}^n is an eigenvector of A. Then.
	- 1. All eigenvalues of A are equal.
	- 2. All eigenvalues of A are distinct.
	- 3. A = λ I for some $\lambda \in \mathbb{C}$, where I is the n x n identity matrix.
	- 4. If χ_A and m_A denote the characteristic polynomial and the minimal polynomial respectively, then $\chi_A = m_A$.

46. Consider the matrices $A = \begin{bmatrix} 0 & 2 & -1 \end{bmatrix}$ J $\overline{}$ ┘ $\overline{}$ $\begin{bmatrix} 0 & 0 & 3 \end{bmatrix}$ \mathbf{r} $A = \begin{vmatrix} 0 & 2 & -1 \end{vmatrix}$ \mathbf{r} 2 2 1 and

$$
B = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}
$$
 Then

1. A and B are similar over the field of rational numbers \mathbb{Q} .

INSTITUTE OF MATHEMA *Dedicated To Disseminating Mathematical Knowledge*

- 2. A is diagonalizable over the field of rational numbers \mathbb{O} . 3. B is the Jordan canonical form of A. 4. The minimal polynomial and the characteristic polynomial of A are the same **47.** Let V be a finite dimensional vector space over ℝ. Let T : V \rightarrow V be a linear transformation such that rank (T^2) = rank (T). Then, 1. Kernel (T^2) = Kernel (T). 2. Range (T^2) = Range (T) . 3. Kernel (T) ∩ Range (T) = ${0}$. 4. Kernel (T²) ∩ Range (T²) = {0}. **48.** Let V be the vector space of polynomials over ℝ of degree less than or equal to n. For $p(x) = a_0 + a_1x + ... + a_nx^n$ in V, define a linear transformation T:V \rightarrow V by (Tp) (x) = a_n + $a_{n-1}x + ... + a_0x^n$. Then 1. T is one to one. 2. T is onto. 3. T is invertible. $4. det T = \pm 1$. **JUNE – 2016 PART – B 49.** Given a *n n* matrix B define *B e* by $e^{B} = \sum_{n=1}^{\infty}$ $=$ $=$ $\sum_{j=0}$ j! \bar{B} \equiv \sum^{∞} $\bar{B}^{\,j}$ *j* $e^{B} = \sum_{n=1}^{\infty} \frac{B}{n}$ Let p be the characteristic polynomial of B. Then the matrix $e^{p(B)}$ is 1. $I_{n \times n}$ 2. $0_{n \times n}$ 3. *n n eI* 4. $\pi I_{n \times n}$ **50.** Let A be a $n \times m$ matrix and b be a $n \times 1$ vector (with real entries). Suppose the equation $Ax=b$, $x \in R^m$ admits a unique solution. Then we can conclude that 1. $m \geq n$ 2. $n \geq m$ 3. $n = m$ 4. $n > m$ **51.** Let V be the vector space of all real polynomials of degree 10. Let $Tp(x) = p'(x)$ for $p \in V$ be a linear transformation from V to V. Consider the basis $\{1, x, x^2,...,x^{10}\}$ of V. Let A be the matrix
	- of T with respect to this basis. Then
	- 1. Trace A=1
	- 2. det A=0
	- 3. there is no $m \in \mathbb{N}$ such that $A^m = 0$
	- 4. A has a non zero eigenvalue
- **52.** Let $x = (x_1, x_2, x_3), y = (y_1, y_2, y_3) \in \mathbb{R}^3$ be linearly independent. Let $\delta_1 = x_2 y_3 - y_2 x_3$, $\delta_2 = x_1 y_3 - y_1 x_3$, $\delta_3 = x_1 y_2 - y_1 x_2$. If V is the span of x,y then 1. $V = \{(u, v, w) : \delta_1 u - \delta_2 v + \delta_3 w = 0\}$
	- 2. $V = \{(u, v, w) : -\delta_1 u + \delta_2 v + \delta_3 w = 0\}$
	- 3. $V = \{(u, v, w): \delta_1 u + \delta_2 v \delta_3 w = 0\}$

4.
$$
V = \{(u, v, w) : \delta_1 u + \delta_2 v + \delta_3 w = 0\}
$$

- **53.** Let A be a $n \times n$ real symmetric nonsingular matrix. Suppose there exists $x \in \mathbb{R}^n$ such that $x' Ax < 0$. Then we can conclude that 1. det (A)<0
	- 2. $B = -A$ is positive definite
	- 3. $\exists y \in \mathbb{R}^n$; $y' A^{-1} y < 0$

$$
4. \,\forall\, y \in \mathbb{R}^n; \, y' A^{-1} y < 0
$$

54. Let $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ $\overline{}$ $\overline{\mathsf{L}}$ I \overline{a} $=$ $0 -1$ 1 0 $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Let $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ be

defined by $f(v, w) = w^T A v$.

Pick the correct statement from below:

- 1. There exists an eigenvector v of A such that Av is perpendicular to v
- 2. The set $\{v \in \mathbb{R}^2 | f(v,v) = 0\}$ is a nonzero subspace of \mathbb{R}^2
- 3. If $v, w \in \mathbb{R}^2$ are non zero vectors such that $f(v, v) = 0 = f(w, w)$, then v is a scalar multiple of w.
- 4. For every $v \in \mathbb{R}^2$, there exists a non zero $w \in \mathbb{R}^2$ such that $f(v, w) = 0$.

PART – C

- **55.** Let V be the vector space of all complex polynomials p with deg $p \le n$. Let T : V \rightarrow V be the map (Tp) $(x) = p'(1)$, $x \in \mathbb{C}$. Which of the following are correct? 1. dim Ker $\overline{T} = n$. 2.dim range T = 1.
3. dim Ker T = 1. 4. dim range T=n+ 4. dim range $T = n + 1$.
- **56.** Let A be an n ×n real matrix. Pick the correct answer(s) from the following
	- 1. A has at least one real eigenvalue.
	- 2. For all nonzero vectors v,w $\in \mathbb{R}^n$, $(Aw)^T(Av) > 0.$
	- 3. Every eigenvalue of A^TA is a non negative real number.
	- 4. $I + A^{T}A$ is invertible.

INSTITUTE OF MATHEMAT *Dedicated To Disseminating Mathematical Knowledge*

57. Let T be a n x n matrix with the property Tⁿ=0. Which of the following is/are true? 1. T has n distinct eigenvalues 2. T has one eigenvalue of multiplicity n 3. 0 is an eigenvalue of T. 4. T is similar to a diagonal matrix. **58.** Let $V = \{f: [0,1] \rightarrow \mathbb{R} | f$ is a polynomial of degree less than or equal to n}. Let $f_i(x) = x^i$ for $0 \leq j \leq n$ and let A be the $(n+1) \times (n+1)$ matrix given by $a_{ij} = \int_0^1 f_i(x) f_j(x) dx$. Then which of the following is/are true? 1. dim $V = n$. 2. dim $V > n$. 3. A is nonnegative definite, i.e., for all $v \in \mathbb{R}^n$, $\langle Av, v \rangle \geq 0$. 4. det $A > 0$. **59.** Consider the real vector space V of polynomials of degree less than or equal to d. For $p \in V$ define $||p||_k = max$ { $|p(0)|$, $|p'(0)|,...,$ $|p^{(k)}(0)|$, where $p^{(t)}(0)$ is the ith derivative of p evaluated at 0, Then $||p||_k$ defines a norm on V if and only if $1. k ≥ d - 1$ 2. k < d $3. k \ge d$ 4. k < d - 1 **60.** Let A, B be n×n real matrices such that det $A > 0$ and det $B < 0$. For $0 \le t \le 1$. Consider $C(t) = tA + (1-t)B$. Then 1. C(t) is invertible for each $t\in[0,1]$. 2. There is a $t_0 \in (0,1)$ such that $C(t_0)$ is not invertible. 3. C(t) is not invertible for each $t \in [0,1]$. 4. C(t) is invertible for only finitely many $t \in [0,1]$. **61.** Let $\{a_1, \ldots, a_n\}$ and $\{b_1, \ldots, b_n\}$ be two bases of \mathbb{R}^n . Let P be nxn matrix with real entries such that $Pa_i=b_i$ i=1,2,...,n. Suppose that every eigenvalue of P is either –1 or 1. Let $Q = 1 + 2P$. Then which of the following statements are true? 1. $\{a_i + 2b_i \mid i = 1, 2, ..., n\}$ is also a basis of V. 2. Q is invertible. 3. Every eigenvalue of Q is either 3 or -1. 4. det $Q > 0$ if det $P > 0$. **62.** Let A be an n × n matrix with real entries. Define $\langle x, y \rangle_A = \langle Ax, Ay \rangle, x, y \in \mathbb{R}^n$. Then $\langle x, y \rangle$ _A defines an inner-product if and only if

- 1. ker $A = \{0\}$.
- 2. rank $A = n$.
- 3. All eigenvalues of A are positive.
- 4. All eigenvalues of A are non-negative.
- **63.** Suppose $\{v_1, ..., v_n\}$ are unit vectors in \mathbb{R}^n

such that
$$
||v||^2 = \sum_{i=1}^n |\langle v_i, v \rangle|^2 \forall v \in \mathbb{R}^n
$$

Then decide the correct statements in the following

- 1. v_1, \ldots, v_n are mutually orthogonal
- 2. { v_1, \ldots, v_n } is a basis for \mathbb{R}^n
- 3. $v_1,...,v_n$ are not mutually orthogonal
- 4. Atmost $n 1$ of the elements in the set ${v_1,..., v_n}$ can be orthogonal.

DEC – 2016

PART – B

64. The matrix
$$
\Big|
$$

$$
\begin{pmatrix} 3 & -1 & 0 \ -1 & 2 & -1 \ 0 & -1 & 3 \end{pmatrix}
$$
 is

- 1. positive definite.
- 2. non-negative definite but not positive definite.
- 3. negative definite
- 4. neither negative definite nor positive definite

65. Which of the following subsets of \mathbb{R}^4 is a basis of \mathbb{R}^4 ? $B_1 = \{(1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1)\}$ $B_2 = \{(1,0,0,0), (1,2,0,0), (1,2,3,0), (1,2,3,4)\}\$

- $B_3 = \{(1,2,0,0), (0,0,1,1), (2,1,0,0), (-5,5,0,0)\}\$
- 1. B_1 and B_2 but not B_3
- 2. B_1 , B_2 and B_3
- 3. B_1 and B_3 but not B_2
- 4. Only B_1

66. Let
$$
D_1 = det \begin{pmatrix} a & b & c \ x & y & z \ p & q & r \end{pmatrix}
$$
 and
\n
$$
D_2 = det \begin{pmatrix} -x & a & -p \ y & -b & q \ z & -c & r \end{pmatrix}.
$$
 Then
\n1. $D_1 = D_2$
\n2. $D_1 = 2D_2$
\n3. $D_1 = -D_2$
\n4. $2D_1 = D_2$

OHAN INSTITUTE OF MATHEMAT *Dedicated To Disseminating Mathematical Knowledge*

,

 $\overline{}$ J \setminus

67. Consider the matrix $A = \begin{bmatrix} -\sin \theta & \cos \theta \end{bmatrix}$ $\cos \theta$ sin $\overline{}$ \setminus ſ ÷, $=\begin{vmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{vmatrix}$ $A = \begin{pmatrix} \cos \theta & \sin \theta \\ \cos \theta & \sin \theta \end{pmatrix}$ where 31 $\theta = \frac{2\pi}{\sigma^2}$ Then A²⁰¹⁵ equals 1. A 2. I 3. $-\sin 13\theta$ $\cos 13\theta$ $\cos 13\theta$ $\sin 13\theta$ I I \setminus ſ 4. $\overline{}$ $\overline{}$ $\bigg)$ \setminus I I \setminus ſ -1 0 0 1

68. Let J denote the matrix of order $n \times n$ with all entries 1 and let B be a $(3n) \times (3n)$ matrix \backslash $\overline{0}$ θ *J*

given by $B =$ $\overline{}$ $\overline{}$ $\overline{}$ J I I \setminus $B = \begin{vmatrix} 0 & J & 0 \end{vmatrix}$ 0 0 *J* Then the rank of B is 1. $2n$ 2. $3n - 1$ 3.2 4. 3

69. Which of the following sets of functions from ℝ to ℝ is a vector space over ℝ?

$$
S_1 = \{ f \mid \lim_{x \to 3} f(x) = 0 \}
$$

$$
S_2 = \{ g \mid \lim_{x \to 3} g(x) = 1 \}
$$

$$
S_3 = \left\{ h \left| \lim_{x \to 3} h(x) \text{ exists} \right. \right\}
$$

1. Only
$$
S_1
$$

- 2. Only S_2
- 3. S_1 and S_3 but not S_2
- 4. All the three are vector spaces
- **70.** Let A be an $n \times m$ matrix with each entry equal to +1, -1 or 0 such that every column has exactly one +1 and exactly one -1. We can conclude that 1. Rank $A \le n - 1$ 2. Rank $A = m$ $3. n \le m$ 4. $n - 1 \le m$
- **71.** What is the number of non-singular 3×3 matrices over F_2 , the finite field with two elements? 1. 168 2. 384 3. 2^3 4 3^2

PART – C

72. Let A=[a_{ij}] be an $n \times n$ matrix such that a_{ij} is an integer for all i.j. Let AB = I with B= $[b_{ii}]$ (where I is the identity matrix). For a square

matrix C, det C denotes its determinant. Which of the following statements is true?

- 1. If det $A=1$ then det $B=1$.
- 2. A sufficient condition for each b_{ii} to be an integer is that det A is an integer.
- 3. B is always an integer matrix.
- 4. A necessary condition for each b_{ij} to be an integer is det $A \in \{-1, +1\}$.

73. Let
$$
A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}
$$
 and let α_n and β_n denote

the two eigenvalues of $Aⁿ$ such that $| \alpha_n | \geq | \beta_n |$. Then

- 1. $\alpha_n \to \infty$ as n $\to \infty$
- 2. β_n →0 as n→∞
- 3. $\,\beta_{_{n}}\,$ is positive if n is even.
- 4. $\,\beta_{\scriptscriptstyle n}^{}$ is negative if n is odd.
- **74.** Let M_n denote the vector space of all $n \times n$ real matrices. Among the following subsets of M_n, decide which are linear subspaces.
	- 1. $V_1 = {A \in M_n : A \text{ is nonsingular}}$
	- 2. $V_2 = {A \in M_n : det (A) = 0}$
	- 3. $V_3 = {A \in M_0 : \text{trace}(A) = 0}$
	- 4. $V_4 = {BA: A \in M_0}$, where B is some fixed matrix in M_n .
- **75.** If P and Q are invertible matrices such that PQ = - QP, then we can conclude that 1. $Tr(P) = Tr(Q) = 0$ 2. $Tr(P) = Tr(Q) = 1$ 3. $Tr(P) = -Tr(Q)$ 4. $Tr(P) \neq Tr(Q)$
- **76.** Let n be an odd number \geq 7. Let A=[a_{ii}] be an $n \times n$ matrix with $a_{i,i+1}=1$ for all $i=1,2,...,n$ n-1 and $a_{n,1}=1$. Let $a_{ij}=0$ for all the other pairs (i,j). Then we can conclude that 1. A has 1 as an eigenvalue.
	- 2. A has -1 as an eigenvalue. 3. A has at least one eigenvalue with
	- multiplicity ≥ 2 .
	- 4. A has no real eigenvalues.
- **77.** Let W_1 , W_2 , W_3 be three distinct subspaces of \mathbb{R}^{10} such that each W_i has dimension 9. Let $W = W_1 \cap W_2 \cap W_3$. Then we can conclude that

1. W may not be a subspace of \mathbb{R}^{10}

- 2. dim W ≤ 8
- 3. dim W ≥ 7
- 4. dim W ≤ 3

INSTITUTE OF MATHEMA

Dedicated To Disseminating Mathematical Knowledge

- **78.** Let A be a real symmetric matrix. Then we can conclude that
	- 1. A does not have 0 as an eigenvalue
	- 2. All eigenvalues of A are real
	- 3. If A^1 exists, then A^{-1} is real and symmetric
	- 4. A has at least one positive eigenvalue

JUNE- 2017

PART – B

- **79.** Let A be a 4×4 matrix. Suppose that the null space N(A) of A is $\{(x, y, z, w) \in \mathbb{R}^4 : x+y+z = 0, x+y+w = 0\}.$ Then 1. dim (column space (A)) = 1 2. dim (column space (A)) = 2 3. rank $(A) = 1$ 4. $S = \{(1,1,1,0), (1,1,0,1)\}$ is a basis of N(A)
- **80.** Let A and B be real invertible matrices such that $AB = -BA$. Then 1. Trace (A) = Trace (B) = 0 2. Trace (A) = Trace (B) = 1 3. Trace $(A) = 0$, Trace $(B) = 1$ 4. Trace $(A) = 1$, Trace $(B) = 0$
- **81.** Let A be an $n \times n$ self-adjoint matrix with eigenvalues $\lambda_1, ..., \lambda_n$. Let $|| X ||_2 = \sqrt{ |X_1|^2 + ... + |X_n|^2}$ for $X = (x_1, ..., x_n) \in \mathbb{C}^n$. If $p(A) = a_0 I + a_1 A + ... + a_n A^n$ then $\sup_{\|X\|_2=1}\|p(A)X\|_2$ is equal to 1. max $\{a_0 + a_1\lambda_j + ... + a_n\lambda_j^n : 1 \le j \le n\}$ 2. max $\{ | a_0 + a_1 \lambda_j + ... + a_n \lambda_j^n | : 1 \le j \le n \}$ 3. $\min\{a_0 + a_1\lambda_j + \dots + a_n\lambda_j^n : 1 \le j \le n\}$ 4. $\min\{|a_0 + a_1\lambda_j + ... + a_n\lambda_j^n|: 1 \le j \le n\}$
- **82.** Let $p(x) = \alpha x^2 + \beta x + \gamma$ be a polynomial, where $\alpha, \beta, \gamma \in \mathbb{R}$. Fix $x_0 \in \mathbb{R}$. Let $S = \{(a,b,c) \in \mathbb{R}^3 : p(x) = a(x - x_0)^2 +$ $b(x-x_0)+c$ for all $x \in \mathbb{R}$. Then the number of elements in S is 1. 0 2. 1 3. strictly greater than 1 but finite 4. infinite

83. Let $A = \begin{vmatrix} 1 & -2 & 0 \end{vmatrix}$ $\begin{bmatrix} 0 & 0 & -3 \end{bmatrix}$ $\overline{}$ \cdot \mid \mathbf{r} \mathbf{r} \mathbf{r} $A = \begin{vmatrix} 1 & -2 & 0 \end{vmatrix}$ and *I* be the 3×3 $\overline{0}$ identity matrix. If $6A^{-1} = aA^2 + bA + cI$ for $a,b,c \in \mathbb{R}$ then (a,b,c) equals 1. (1, 2, 1) 2. (1, -1, 2) 3. $(4, 1, 1)$ 4. $(1, 4, 1)$ $\begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$

84. Let $A = \begin{vmatrix} 1 & -2 & 5 \end{vmatrix}$. 2 $5 - 3$ $\overline{}$ $\begin{bmatrix} 2 & 5 & -3 \end{bmatrix}$ I $A = \begin{vmatrix} 1 & -1 \end{vmatrix}$ Then the eigenvalues of A are
1. -4 , 3, -3 2. 4, 3, 1 $1. -4, 3, -3$ 3. $4, -4 \pm \sqrt{13}$ 4. $4, -2 \pm 2\sqrt{7}$

PART – C

- **85.** Consider the vector space V of real polynomials of degree less than or equal to n. Fix distinct real numbers a_0 , a_1 ,..., a_k . For p∈V, max{|p(aj)|:0≤ j ≤k} defines a norm on V 1. only if $k < n$ 2. only if $k \ge n$ $3.$ if k+1≤n 4. if k ≥ n+1
- **86.** Let V be the vector space of polynomials of degree at most 3 in a variable x with coefficient in ℝ. Let $T = d/dx$ be the linear transformation of V to itself given by differentiation. Which of the following are correct?
	- 1. T is invertible
	- 2. 0 is an eigenvalue of T
	- 3. There is a basis with respect to which the matrix of T is nilpotent.
	- 4. The matrix of T with respect to the basis ${1, 1+x, 1+x+x^2, 1+x+x^2+x^3}$ is diagonal
- **87.** Let m,n,r be natural numbers. Let A be $m \times n$ matrix with real entries such that $(AA^t)^r = I$, where *I* is the $m \times m$ identity matrix and A^t is the transpose of the matrix A. We can conclude that
	- 1. $m=n$
	- 2. AA^t is invertible
	- 3. A^t A is invertible
	- 4. if m=n, then A is invertible
- **88.** Let A be an $n \times n$ real matrix with $A^2 = A$. Then
	- 1. the eigenvalues of A are either 0 or 1

TUTE OF M *Dedicated To Disseminating Mathematical Knowledge*

2. A is a diagonal matrix with diagonal entries 0 or 1 3. $rank(A) = trace(A)$

- 4. rank $(I A) = \text{trace}(I A)$
- **89.** For any $n \times n$ matrix B, let N(B) = { $X \in \mathbb{R}^n$: $BX = 0$ } be the null space of B. Let A be a 4×4 matrix with dim(N($A - 2I$))=2, dim $(N(A-4I))=1$ and rank $(A) = 3$. Then 1. 0,2 and 4 are eigenvalues of A 2. determinant $(A) = 0$ 3. A is not diagonalizable
	- 4. trace $(A) = 8$
- **90.** Which of the following 3×3 matrices are diagonalizable over ℝ?

- **91.** Let H be a real Hilbert space and $M \subseteq H$ be a closed linear subspace. Let $x_0 \in H\backslash M$. Let $y_0 \in M$ be such that $||x_0 - y_0|| = inf{||x_0 - y||: y \in M}$. Then 1. such a y_0 is unique 2. x_0 \perp M 3. $y_0 \perp M$
	- 4. $x_0 y_0 \perp M$

92. Let
$$
A = \begin{bmatrix} 3 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}
$$
 and $Q(X) = X^t A X$ for

 $X \in \mathbb{R}^3$. Then 1. A has exactly two positive eigenvalues 2. all the eigenvalues of A are positive 3. $Q(X) \ge 0$ for all $X \in \mathbb{R}^3$ 4. $Q(X)$ < 0 for some $X \in \mathbb{R}^3$

93. Consider the matrix $\sqrt{4}$

$$
A(x) = \begin{pmatrix} 1 + x^2 & 7 & 11 \\ 3x & 2x & 4 \\ 8x & 17 & 13 \end{pmatrix}; x \in \mathbb{R}.
$$
 Then

 \rightarrow

1. A(x) has eigenvalue 0 for some x∈ℝ

- 2. 0 is not an eigenvalue of $A(x)$ for any x∈ℝ
- 3. A(x) has eigenvalue 0 for all $x \in \mathbb{R}$
- 4. A(x) is invertible for every $x \in \mathbb{R}$

DECEMBER – 2017

PART – B

94. Let A be a real symmetric matrix and
\nB = 1 + iA, where
$$
i^2 = -1
$$
. Then
\n1. B is invertible if and only if A is invertible
\n2. all eigenvalues of B are necessarily real
\n3. B – 1 is necessarily invertible
\n4. B is necessarily invertible
\n4. B is necessarily invertible
\n95. Let $A = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$. Then the smallest positive
\ninteger n such that Aⁿ = 1 is
\n1. 1 2.2 3.4 4.6
\n96. Let $A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 2 & 3 & \alpha \end{bmatrix}$ and $b = \begin{bmatrix} 1 \\ 3 \\ \beta \end{bmatrix}$. Then the
\nsystem AX = b over the real numbers has
\n1. no solution whenever $\beta \neq 7$.
\n2. an infinite number of solutions whenever
\n $\alpha \neq 2$.
\n3. an infinite number of solutions if $\alpha = 2$
\nand $\beta \neq 7$
\n4. a unique solution if $\alpha \neq 2$
\n97. Let $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \in M_2 (\mathbb{R})$ and $\phi : \mathbb{R}^2 \times \mathbb{R}^2 \rightarrow \mathbb{R}$

be the bilinear map defined by ϕ (v, w) = v T Aw. Choose the correct statement from below:

- 1. $\phi(v, w) = \phi(w, v)$ for all v, $w \in \mathbb{R}^2$
- 2. there exists nonzero $v \in \mathbb{R}^2$ such that ϕ (v, w) = 0 for all w $\in \mathbb{R}^2$
- 3. there exists a 2×2 symmetric matrix B such that ϕ (v, v) = v^TBv for all v $\in \mathbb{R}^2$
- 4. the map $\psi : \mathbb{R}^4 \to \mathbb{R}$ defined by

$$
\psi\begin{pmatrix} v_1 \\ v_2 \\ w_1 \\ w_2 \end{pmatrix} = \phi\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}
$$
 is linear

OHAN INSTITUTE OF MATHEMAT *Dedicated To Disseminating Mathematical Knowledge*

PART – C

- **98.** Let A be an m×n matrix with rank r. If the linear system AX=b has a solution for each $\mathsf{b}{\in}\mathbb{R}^{\mathsf{m}}$, then
	- 1. m=r
	- 2. the column space of A is a proper subspace of \mathbb{R}^m
	- 3. the null space of A is a non-trivial subspace of \mathbb{R}^n whenever m=n
	- 4. $m \geq n$ implies $m = n$

99. Let
$$
M = \{A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in \mathbb{Z} \text{ and the}
$$

eigenvalues of A are in Q}. Then

1. M is empty

2.
$$
M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in \mathbb{Z} \}
$$

- 3. If A∈M then the eigenvalues of A are in $\mathbb Z$
- 4. If A,B∈M are such that AB=1 then det $A \in (+1,-1)$
- **100.** Let A be a 3×3 matrix with real entries. Identify the correct statements.
	- 1. A is necessarily diagonalizable over ℝ
	- 2. If A has distinct real eigenvalues then it is diagonalizable over ℝ
	- 3. If A has distinct eigenvalues then it is diagonalizable over **ℂ**
	- 4. If all eigenvalues of A are non-zero then it is diagonalizable over **ℂ**
- **101.** Let V be the vector space over ℂ of all polynomials in a variable X of degree at most 3. Let D:V→V be the linear operator given by differentiation with respect to X. Let A be the matrix of D with respect to some basis for V. Which of the following are true?
	- 1. A is a nilpotent matrix
	- 2. A is a diagonalizable matrix
	- 3. the rank of A is 2
	- 4. The Jordan canonical form of A is
		- $\overline{}$ 0 1 0 0
		- \mathbf{r} $\begin{array}{|ccc|} 0 & 0 & 1 & 0 \end{array}$
		- $\overline{}$ $\overline{}$ 0 0 0 1
		- J \rfloor \mathbf{r} 0 0 0 0
- **102.** For every 4×4 real symmetric non-singular matrix A, there exists a positive integer p such that
	- 1. pI + A is positive definite
	- 2. A^p is positive definite
	- 3. A^{-p} is positive definite
	- 4. $exp(pA) I$ is positive definite
- **103.** Let A be an m×n matrix of rank m with $n > m$. If for some non-zero real number α . we have x^t AA^t x= α x^tx, for all x∈ℝ^m then A^t A has
	- 1. exactly two distinct eigenvalues
	- 2. 0 as an eigenvalue with multiplicity n-m
	- 3. α as a non zero eigenvalue
	- 4. exactly two non-zero distinct eigenvalues

JUNE – 2018

PART – B

- **104.** Let \mathbb{R}^n , $n \ge 2$, be equipped with standard inner product. Let $\{v_1, v_2,..., v_n\}$ be n column vectors forming an orthonormal basis of \mathbb{R}^n . Let A be the $n \times n$ matrix formed by the column vectors v_1 , ..., v_n . Then 1. $A = A^{-1}$ 2. $A = A^{T}$ 3. $A^{-1} = A^{T}$ 4. Det(A) = 1
- **105.** Let A be a $(m \times n)$ matrix and B be a $(n \times m)$ matrix over real numbers with $m < n$. Then 1. AB is always nonsingular 2. AB is always singular
	- 3. BA is always nonsingular
	- 4. BA is always singular
- **106.** If A is a (2×2) matrix over ℝ with Det(A+I) =1+Det(A), then we can conclude that 1. $Det(A) = 0$ 2. $A=0$
	- 3. $Tr(A) = 0$ 4. A is nonsingular

107. The system of equations:

$$
-1 \cdot x + 2 \cdot x^2 + 3 \cdot xy + 0 \cdot y = 6
$$

$$
2 \cdot x + 1 \cdot x^2 + 3 \cdot xy + 1 \cdot y = 5
$$

$$
3 \cdot x - 1 \cdot x^2 + 0 \cdot xy + 1 \cdot y = 7
$$

- 1. has solutions in rational numbers
- 2. has solutions in real numbers
- 3. has solutions in complex numbers
- 4. has no solution

ITUTE OI *Dedicated To Disseminating Mathematical Knowledge*

108. The trace of the matrix $\begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$ 20 $\begin{pmatrix} 0 & 0 & 3 \end{pmatrix}$ Ω $\overline{}$ $\overline{}$ J \setminus I I ſ is 1. 7^{20} 2. $2^{20} + 3^{20}$ $3. 2 \cdot 2^{20} + 3$ ²⁰ 4. 2^{20} + 3^{20} + 1 **PART – C 109.** Let $A =$ $\overline{}$ $\overline{}$ $\overline{}$ J $\begin{pmatrix} 1 & 2 & 0 \end{pmatrix}$ \mathbf{I} $\overline{}$ \setminus ſ $= |0 \t 0 \t -2 |$ and define for x, y, 0 0 1 *A* $z \in \mathbb{R}$ $Q(x, y, z) = (x \ y \ z) A \vert y \vert.$ $\overline{}$ $\overline{}$ J \setminus \mathbf{I} \mathbf{I} I \setminus ſ *g*(*x*, *y*, *z*) =(*x y z*) *A* | *y z x* Which of the following statements are true? 1. The matrix of second order partial derivatives of the quadratic form Q is 2A. 2. The rank of the quadratic form Q is 2 3. The signature of the quadratic form Q is $(+ + 0)$ 4. The quadratic form Q takes the value 0 for some non-zero vector (x, y, z) **110.** Let $M_n(\mathbb{R})$ denote the space of all $n \times n$ real matrices identified with the Euclidean space \mathbb{R}^{n^2} . Fix a column vector $x \neq 0$ in \mathbb{R}^n . Define f: $M_n(\mathbb{R}) \to \mathbb{R}$ by f(A) = $\langle A^2x, x \rangle$. Then 1. f is linear 2. f is differentiable 3. f is continuous but not differentiable 4. f is unbounded **111.** Let V denote the vector space of all sequences $\mathbf{a} = (a_1, a_2, ...)$ of real numbers such that $\Sigma 2^{n} |a_{n}|$ converges. Define $||.|| : V \rightarrow \mathbb{R}$ by $||a|| = \sum 2^n |a_n|.$ Which of the following are true? 1. V contains only the sequence (0, 0, …) 2. V is finite dimensional 3. V has a countable linear basis 4. V is a complete normed space **112.** Let V be a vector space over ℂ with dimension n. Let $T : V \rightarrow V$ be a linear transformation with only 1 as eigenvalue. Then which of the following must be true? 1. T – I = 0 2. $(T - 1)^{n-1} = 0$ 1. $T - I = 0$
3. $(T - I)^n = 0$ $= 0$ 4. $(T - 1)^{2n} = 0$

113. If A is a (5×5) matrix and the dimension of the solution space of $Ax = 0$ is at least two, then

> 1. Rank $(A^2) \leq 3$ ζ) \leq 3 2. Rank $(A^2) \geq 3$ 3. Rank $(A^{2}) = 3$ \hat{A} = 3 4. Det $(A^2) = 0$

-
- **114.** Let $A \in M_3(\mathbb{R})$ be such that $A^8 = I_{3 \times 3}$. Then
	- 1. minimal polynomial of A can only be of degree 2
	- 2. minimal polynomial of A can only be of degree 3
	- 3. either $A = I_{3\times 3}$ or $A = -I_{3\times 3}$
	- 4. there are uncountably many A satisfying the above
- **115.** Let A be an $n \times n$ matrix (with $n > 1$) satisfying $A^2 - 7A + 12I_{n \times n} = O_{n \times n}$, where $I_{n \times n}$ and O_{nxn} denote the identity matrix and zero matrix of order n respectively. Then which of the following statements are true? 1. A is invertible
	- 2. $t^2 7t + 12n = 0$ where $t = Tr(A)$
	- 3. $d^2 7d + 12 = 0$ where $d = Det(A)$
	- 4. λ^2 7 λ + 12 = 0 where λ is an eigenvalue of A

116. Let A be a (6×6) matrix over ℝ with characteristic polynomial = $(x - 3)^2 (x - 2)^4$ and minimal polynomial = $(x - 3)(x - 2)^2$. Then Jordan canonical form of A can be

IOHAN INSTITUTE OF MATHEMAT *Dedicated To Disseminating Mathematical Knowledge*

4. $\begin{array}{|ccc|} 0 & 0 & 2 & 1 & 0 & 0 \end{array}$ $(0 0 0 0 0 2)$ $\overline{}$ $\overline{}$ 0 0 0 2 0 0 $\overline{}$ $\begin{bmatrix} 0 & 3 & 0 & 0 & 0 & 0 \end{bmatrix}$ $\overline{}$ \setminus I 0 0 0 0 2 1 I 0 0 2 1 0 0 \mathbf{r} \setminus 3 1 0 0 0 0 0 3 0 0 0 0

- **117.** Let V be an inner product space and S be a subset of V . Let S denote the closure of S in V with respect to the topology induced by the metric given by the inner product. Which of the following statements are true?
	- 1. $S = (S^{\perp})^{\perp}$
	- 2. $\overline{S} = (S^{\perp})^{\perp}$
	- 3. $\overline{span(S)} = (S^{\perp})^{\perp}$
	- 4. $S^{\perp} = ((S^{\perp})^{\perp})^{\perp}$

DECEMBER – 2018

PART – B

118. Consider the subspaces W₁ and W₂ of \mathbb{R}^3 given by $W_1 = \{(x,y,z) \in \mathbb{R}^3 : x + y + z = 0\}$ and $W_2 = \{(x,y,z) \in \mathbb{R}^3 : x - y + z = 0\}$. If W is a subspace of \mathbb{R}^3 such that

(i) $W \cap W_2$ = span {(0,1,1)}

- (ii) $W \cap W_1$ is orthogonal to $W \cap W_2$ with respect to the usual inner product of \mathbb{R}^3 , then
- 1. $W = span \{(0,1,-1), (0,1,1)\}\$
- 2. $W = span \{(1,0,-1), (0,1,-1)\}\$
- 3. $W = span \{(1,0,-1),(0,1,1)\}\$
- 4. $W = span \{(1,0,-1),(1,0,1)\}\$

119. Let
$$
C = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}
$$
 be a basis of \mathbb{R}^2 and T:
 $\mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ x-2y \end{pmatrix}$. If

T[C] represents the matrix of T with respect to the basis C, then which among the following is true?

$$
1. T[C] = \begin{bmatrix} -3 & -2 \\ 3 & 1 \end{bmatrix}
$$

2. $T[C] = \begin{bmatrix} 5 & 2 \\ -3 & 1 \end{bmatrix}$ $\cdot \mid$ \lfloor L ÷ $=\begin{bmatrix} 3 & - \\ 2 & 3 \end{bmatrix}$ 3 1 $T[C] = \begin{bmatrix} 3 & -2 \\ 2 & 3 \end{bmatrix}$ 3. $T[C] = \begin{bmatrix} 5 & 1 \\ 3 & 2 \end{bmatrix}$ $\overline{}$ \lfloor $=\begin{bmatrix} -3 & - \\ 2 & -1 \end{bmatrix}$ 3 2 $3 - 1$ *T*[*C*] 4. $T[C] = \begin{bmatrix} 5 & -1 \\ -3 & 2 \end{bmatrix}$ $\overline{}$ L L \overline{a} $=\begin{bmatrix} 3 & - \\ 2 & 3 \end{bmatrix}$ 3 2 $T[C] = \begin{bmatrix} 3 & -1 \\ 2 & 2 \end{bmatrix}$

120. Let $W_1 = \{(u,v,w,x) \in \mathbb{R}^4 \mid u+v+w=0, 2v+x=0,$ $2u+2w-x=0$ } and

> $W_2 = \{(u,v,w,x) \in \mathbb{R}^4 \mid u+w+x=0, u+w-2x=0,$ v-x=0}. Then which of the following is true? 1. dim $(W_1) = 1$ 2. dim $(W_2) = 2$ 3. dim (W_1 ∩ W_2) = 1 4. dim $(W_1 + W_2) = 3$

121. Let A be an nxn complex matrix. Assume that A is self-adjoint and let B denotes the inverse of $(A + iI)$. Then all eigenvalues of

 $(A - iI_n)$ B are

- 1. purely imaginary
- 2. of modulus one
- 3. real
- 4. of modulus less than one
- **122.** Let $\{u_1, u_2, \ldots, u_n\}$ be an orthonormal basis of \mathbb{C}^n as column vectors. Let $M=(u_1,...,u_k)$, $N=(u_{k+1},...,u_n)$ and P be the diagonal kxk
matrix with diagonal entries matrix with diagonal $\alpha_1, \alpha_2, ..., \alpha_k \in \mathbb{R}$. Then which of the following is true? 1. Rank (MPM*)=k, whenever $\alpha_i \neq \alpha_j$, $1 \leq i, j \leq k$.
	- 2. Trace (MPM*) = $\sum_{i=1}^{k}$
	- $a_{\mathit{i}=1}$ α_{i} 3. Rank (M*N)=min (k,n-k)
	- 4. Rank (MM*+NN*)<n
- **123.** Let B: $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be the function $B(a,b) = ab$. Which of the following is true?
	- 1. B is a linear transformation
	- 2. B is a positive definite bilinear form
	- 3. B is symmetric but not positive definite
	- 4. B is neither linear nor bilinear

PART – C

124. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear map that satisfies $T^2 = T - I_n$. Then which of the following are true? 1. T is invertible

IOHAN INSTITUTE OF MATHEMATI

Dedicated To Disseminating Mathematical Knowledge

2. $T - I_n$ is not invertible 3. T has a real eigen value 4. $T^3 = -I_n$ **125.** Let $M = \begin{bmatrix} 0 & 1 & 0 & -1 & 3 & 4 \ 0 & 0 & 1 & 0 & 1 & 4 \end{bmatrix}$ 1 1 1 0 1 1 0 0 1 0 4 4 $0 \t1 \t0 \t-1 \t3 \t4$ $2 \t0 \t3 \t2 \t0 \t-2$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ J $\overline{}$ L ŀ L L L \mathbf{r} \overline{a} \overline{a} *M* \downarrow \downarrow \downarrow \downarrow L \downarrow \mathbf{r} l. ŀ ļ. Ŀ ļ. $\frac{1}{1}$ 4 1 5 $b_1 = \begin{vmatrix} 1 \\ 1 \end{vmatrix}$ and $b_2 = \begin{vmatrix} 1 \\ 3 \end{vmatrix}$. 3 1 5 2 $\overline{}$ \downarrow \downarrow \downarrow L \downarrow I. I ŀ ļ. L ļ. $b_2 = \left| \begin{array}{c} 1 \\ 2 \end{array} \right|$. Then which of the following are true? 1. both systems $MX = b_1$ and $MX = b_2$ are inconsistent 2. both systems $MX = b_1$ and $MX = b_2$ are consistent 3. the system $MX = b_1 - b_2$ is consistent 4. the systems $MX = b_1 - b_2$ is inconsistent **126.** Let $M = \begin{bmatrix} 2 & 1 & 4 \end{bmatrix}$. 2 1 -4 2 1 4 $1 -1 1$ $\overline{}$ $\overline{}$ $\overline{}$ \rfloor $\overline{}$ I \mathbf{r} \mathbf{r} L \mathbf{r} -2 1 \overline{a} $M = \begin{bmatrix} 2 & 1 & 4 \end{bmatrix}$. Given that 1 is an eigen value of M, then which among the following are correct? 1. The minimal polynomial of M is $(X – 1)$ $(X + 4)$ 2. The minimal polynomial of M is $(X – 1)²$ $(X + 4)$ 3. M is not diagonalizable 4. $M^{-1} = \frac{1}{4}(M + 3I)$ 4 $M^{-1} = \frac{1}{4}(M + 3I)$ **127.** Let A be a real matrix with characteristic polynomial $(X - 1)^3$. Pick the correct statements from below: 1. A is necessarily diagonalizable 2. If the minimal polynomial of A is $(X - 1)^3$, then A is diagonalizable 3. Characteristic polynomial of A^2 is $(X - 1)^3$ 4. If A has exactly two Jordan blocks, then $(A - I)^2$ is diagonalizable **128.** Let P_3 be the vector space of polynomials

with real coefficients and of degree at most 3. Consider the linear map T : $P_3 \rightarrow P_3$ defined by T $(p(x)) = p(x + 1) + p(x - 1)$. Which of the following properties does the matrix of T (with respect to the standard basis B = $\{1, x, x^2, x^3\}$ of P₃) satisfy? 1. $det T = 0$ 2. $(T - 2I)^4 = 0$ but $(T - 2I)^3 \neq 0$

3. $(T - 2I)^3 = 0$ but $(T - 2I)^2 \neq 0$ 4. 2 is an eigen value with multiplicity 4

129. Let M be an $n \times n$ Hermitian matrix of rank k, $k \neq n$. If $\lambda \neq 0$ is an eigen value of M with corresponding unit column vector u, with Mu = λu , then which of the following are true?

1. rank (M - λ uu*) = $k - 1$

2. rank $(M - \lambda uu^*) = k$ 3. rank $(M - \lambda uu^*) = k + 1$

4. $(M - \lambda uu^*)^n = M^n - \lambda^n uu^*$

- **130.** Define a real valued function B on $\mathbb{R}^2 \times \mathbb{R}^2$ as follows. If $u = (x_1, x_2), w = (y_1, y_2)$ belong to \mathbb{R}^2 define B(u, w) = $x_1y_1 - x_1y_2 - x_2y_1 +$ $4x_2y_2$. Let $v_0 = (1, 0)$ and let $W = \{v \in \mathbb{R}^2 : B$ $(v_0, v) = 0$. Then W
	- 1. is not a subspace of \mathbb{R}^2
	- 2. equals ${(0, 0)}$
	- 3. is the y axis
	- 4. is the line passing through (0, 0) and $(1, 1)$
- **131.** Consider the Quadratic forms

 $Q_1 (x, y) = xy$ $Q_2(x, y) = x^2 + 2xy + y^2$

 $Q_3(x, y) = x^2 + 3xy + 2y^2$ on \mathbb{R}^2 . Choose the correct statements from below:

- 1. Q_1 and Q_2 are equivalent
- 2. Q_1 and Q_3 are equivalent
- 3. Q_2 and Q_3 are equivalent
- 4. all are equivalent

JUNE-2019

PART – B

132. Consider the vector space P_n of real polynomials in x of degree less than or equal to n. Define T : $P_2 \rightarrow P_3$ by (Tf) (x) =

> $\int_0^x f(t) dt + f'(x)$. Then the matrix representation of T with respect to the bases $\{1, x, x^2\}$ and $\{1, x, x^2, x^3\}$ is

1.
$$
\begin{pmatrix}\n0 & 1 & 0 & 0 \\
1 & 0 & \frac{1}{2} & 0 \\
0 & 2 & 0 & \frac{1}{3}\n\end{pmatrix}
$$
\n2.
$$
\begin{pmatrix}\n0 & 1 & 0 \\
1 & 0 & 2 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{3}\n\end{pmatrix}
$$

IOHAN INSTITUTE OF MATHEMAT *Dedicated To Disseminating Mathematical Knowledge*

3. \mathbf{I} \mathbf{I} \downarrow \downarrow $\overline{}$ I Ι \setminus I \mathbf{r} I I I I \setminus ſ 3 1 0 2 1 0 1 0 2 0 0 1 0 0 4. $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ J \setminus L L L L L L L \backslash ſ 3 1 0 0 0 2 0 2 $\overline{2}$ 1 0 Ω **133.** Let PA (x) denote the characteristic polynomial of a matrix A. Then for which of the following matrices, $P_A(x) - P_{A^{-1}}(x)$ is a constant? 1. $\overline{}$ $\overline{}$ J \setminus $\overline{}$ I \setminus ſ 2 4 3 3 2. $\overline{}$ $\overline{}$ J \setminus I I \setminus ſ 2 3 4 3 3. $\overline{}$ $\overline{}$ J \setminus $\overline{}$ I \setminus ſ 4 3 3 2 4. $\overline{}$ $\overline{}$ J \setminus I I \setminus ſ 3 4 2 3 **134.** Which of the following matrices is not diagonalizable over ℝ? 1. $\begin{pmatrix} 0 & 0 & 2 \end{pmatrix}$ $\overline{}$ $\overline{}$ $\mathbf{1}$ \mathbf{I} I $\overline{2}$ 0 3 0 $\overline{0}$ 2. \vert $\overline{}$ $\overline{}$ J \setminus \setminus ſ 1 1 1 1 3. $\overline{}$ $\begin{bmatrix} 0 & 3 & 0 \end{bmatrix}$ $\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \end{pmatrix}$ J $\begin{pmatrix} 0 & 0 & 3 \end{pmatrix}$ \mathbf{I} 0 3 0 4. $\overline{}$ $\overline{}$ J \setminus I I \setminus $\begin{pmatrix} 1 & - \end{pmatrix}$ 2 4 $1 -1$ **135.** What is the rank of the following matrix? $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \end{pmatrix}$ $\overline{}$ \downarrow $\overline{}$ \downarrow $\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$ L L $\begin{vmatrix} 1 & 2 & 3 & 3 & 3 \end{vmatrix}$ L 1 2 2 2 2 1 2 3 4 4 1.2 2. 3 3.4 4.5

136. Let V denote the vector space of real valued continuous functions on the closed interval [0, 1]. Let W be the subspace of V spanned by $\{\sin(x), \cos(x), \tan(x)\}.$ Then the dimension of W over ℝ is

137. Let V be the vector space of polynomials in the variable t of degree at most 2 over ℝ. An inner product on V is defined by

$$
\langle f, g \rangle = \int_0^1 f(t) g(t) dt
$$

for f, $g \in V$. Let W = span {1 – t^2 , 1 + t^2 } and W^{\perp} be the orthogonal complement of W in V. Which of the following conditions is satisfied for all $h \in W^{\perp}$? 1. h is an even function, i.e. $h(t) = h(-t)$

- 2. h is an odd function, i.e. $h(t) = -h(-t)$
- 3. $h(t) = 0$ has a real solution
- 4. $h(0) = 0$

PART – C

- **138.** Let L(ℝⁿ) be the space of ℝ-linear maps from \mathbb{R}^n to \mathbb{R}^n . If Ker (T) denotes the kernel (null space) of T then which of the following are true?
	- 1. There exists $T \in L(\mathbb{R}^5) \setminus \{0\}$ such that $Range(T) = Ker(T)$
	- 2. There does not exist $T \in L(\mathbb{R}^5) \setminus \{0\}$ such that Range (T) = Ker (T)
	- 3. There exists T $\in L(\mathbb{R}^6) \setminus \{0\}$ such that Range (T) = Ker (T)
	- 4. There does not exist $T \in L(\mathbb{R}^6) \setminus \{0\}$ such that Range (T) = Ker (T)
- **139.** Let V be a finite dimensional vector space over $\mathbb R$ and T : V \rightarrow V be a linear map. Can you always write $T = T_2 \circ T_1$ for some linear maps $T_1 : V \to W$, $T_2 : W \to V$, where W is some finite dimensional vector space and such that 1. both T_1 and T_2 are onto
	- 2. both T_1 and T_2 are one to one
	- 3. T_1 is onto, T_2 is one to one
	- 4. T_1 is one to one, T_2 is onto
- **140.** Let $A = ((a_{ii}))$ be a 3×3 complex matrix. Identify the correct statements
	- 1. det $(((-1)^{i+j} a_{ij})) = \det A$
	- 2. det($((-1)^{i+j} a_{ij})$) = -det A
	- 3. det($((\sqrt{-1})^{i+j} a_{ij})$) = det A

4.
$$
\det(((\sqrt{-1})^{i+j} a_{ij})) = -\det A
$$

141. Let $p(x) = a_0 + a_1x + ... + a_nx^n$ be a nonconstant polynomial of degree $n \geq 1$. Consider the polynomial

$$
q(x) = \int_0^x p(t) dt, r(x) = \frac{d}{dx} p(x).
$$

Let V denote the real vector space of all polynomials in x. Then which of the following are true?

TUTE OF MATHEM

Dedicated To Disseminating Mathematical Knowledge

1. q and r are linearly independent in V 2. q and r are linearly dependent in V 3. x^n belongs to the linear span of q and r 4. x^{n+1} belongs to the linear span of q and r **142.** Let $M_n(\mathbb{R})$ be the ring of $n \times n$ matrices over ℝ. Which of the following are true for every $n > 22$ 1. there exist matrices A, B $\in M_n(\mathbb{R})$ such that AB – BA = I_n , where I_n denotes the identity $n \times n$ matrix. 2. if A, B \in M_n (ℝ) and AB = BA, then A is diagonalizable over ℝ if and only if B is diagonalizable over ℝ 3. if A, B \in M_n (ℝ), then AB and BA have same minimal polynomial 4. if A, B \in M_n (ℝ), then AB and BA have the same eigen values in R **143.** Consider a matrix $A = (a_{ii})_{5\times 5}$, $1 \le i, j \le 5$ such that $a_{ii} = \frac{1}{\sqrt{1-\frac{1}{n}}},$ 1 1 $+n_{i}+$ $=$ $i + \mu_j$ $\frac{1}{n_i}$ – $\frac{n_i + n_i}{n_i + n_i}$ $a_{ii} = \frac{1}{\sqrt{1-\frac{1}{n}}},$ where $n_i, n_j \in \mathbb{N}$. Then in which of the following cases A is a positive definite matrix? 1. $n_i = i$ for all $i = 1, 2, 3, 4, 5$ 2. $n_1 < n_2 < ... < n_5$ 3. $n_1 = n_2 = ... = n_5$ 4. $n_1 > n_2 > ... > n_5$ **144.** Let $\langle , \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ denote the standard inner product on \mathbb{R}^n . For a non zero $w \in \mathbb{R}^n$, define $T_w : \mathbb{R}^n \to \mathbb{R}^n$ by , , $2\langle v,$ $(v) = v - \frac{\sum y_i, w_j}{\sum y_i} w_i$ *w w v w* $T_w(v) = v - \frac{\sum y_i w_j}{\sum w_i} w_i$, for $v \in \mathbb{R}^n$. Which of the following are true? 1. det $(T_w) = 1$ 2. $\langle T_w (v_1), T_w (v_2) \rangle = \langle v_1, v_2 \rangle \ \forall \ v_1, v_2 \in \mathbb{R}^n$ 3. $T_w = T_w^{-1}$ 4. $T_{2w} = 2T_w$ **145.** Consider the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ J \backslash $\overline{}$ \setminus ſ $=$ 1 0 0 1 $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ over the field Q of rationals. Which of the following matrices are of the form P^t AP for a suitable 2 \times 2 invertible matrix P over \mathbb{Q} ? Here P^t denotes the transpose of P. 1. $\overline{}$ J \setminus $\overline{}$ I \setminus ſ $0 -2$ 2 0 2. $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ J \setminus $\overline{}$ \setminus ſ 0 2 2 0

 $3.\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ J \setminus $\overline{}$ $\overline{\mathcal{L}}$ ſ $0 -1$ 1 0 $4\left[\begin{matrix}6\\4\end{matrix}\right]$ J \setminus $\overline{}$ $\overline{\mathcal{L}}$ ſ 4 5 3 4 **DECEMBER – 2019 PART – B 146.** Let $A = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$. -1 5 1 2 0 5) $\overline{}$ I I I \setminus ſ The system of linear equations $AX = Y$ has a solution 1. only for $Y = |0|$, $\left(0 \right)$ $\overline{}$ \setminus I I ſ $Y = |0|, x \in \mathbb{R}$ *x* 2. only for $Y=\mid y \mid$, 0 0 $\overline{}$ $\overline{}$ J \setminus I $\overline{ }$ I \setminus ſ $Y = |y|, y \in \mathbb{R}$ 3. only for $Y = |y|$, 0 $\overline{}$ $\overline{}$ J \setminus I $\overline{ }$ I \setminus ſ $Y = |y|, y, z \in \mathbb{R}$ *z* 4. for all $Y \in \mathbb{R}^3$ **147.** Let V be a vector space of dimension 3 over R. Let $T: V \rightarrow V$ be a linear transformation, given by the matrix $A =$ 2 $5 - 3$ $\overline{}$ with \setminus I L $\overline{}$ ſ -2 $A = \begin{vmatrix} 1 & -4 & 3 \end{vmatrix}$ \overline{a} $1 -1 0$ respect to an ordered basis (v_1, v_2, v_3) of V. Then which of the following statements is true? 1. $T(v_3) = 0$ $2.\text{T}(v_1 + v_2) = 0$ $3. T(v_1 + v_2 + v_3) = 0$ $4.T(v₁ + v₃) = T (v₂)$ **148.** Let $M_4(\mathbb{R})$ be the space of all (4×4) matrices over ℝ. Let $W = \{(a_{ij}) \in M_4(\mathbb{R}) \mid$ $\sum_{i+j=k} a_{ij} = 0$, *for* $k = 2,3,4,5,6,7,8$ Then dim(W) is 1. 7 2. 8 3.9

4.10

INSTITUTE OF MATHEMA *Dedicated To Disseminating Mathematical Knowledge*

149. For $t \in \mathbb{R}$, define

$$
M(t) = \begin{pmatrix} 1 & t & 0 \\ 1 & 1 & t^2 \\ 0 & 1 & 1 \end{pmatrix}.
$$

Then which of the following statements is true?

- 1. det M(t) is a polynomial function of degree 3 in t
- 2. det M(t) = 0 for all $t \in \mathbb{R}$
- 3. det M(t) is zero for infinitely many $t \in \mathbb{R}$
- 4. det M(t) is zero for exactly two $t \in \mathbb{R}$
- **150.** For a quadratic form in 3 variables over ℝ, let r be the rank and s be the signature. The number of possible pairs (r, s) is 1. 13 2.9 3.10 4.16

PART – C

151. Let A $\in M_3(\mathbb{R})$ and let X = {C $\in GL_3(\mathbb{R})$ | CAC⁻¹ is triangular}. Then 1. $X \neq \emptyset$

- 2. If $X = \emptyset$, then A is not diagonalizable over ℂ
- 3. If $X = \emptyset$. Then A is diagonalizable over $\mathbb C$
- 4. If $X = \emptyset$, then A has no real eigenvalue

152. Which of the following statements regarding quadratic forms in 3 variables are true?

- 1. Any two quadratic forms of rank 3 are isomorphic over ℝ
- 2. Any two quadratic forms of rank 3 are isomorphic over ℂ
- 3. There are exactly three non zero quadratic forms of rank \leq 3 upto isomorphism over $ℂ$
- 4. There are exactly three non zero quadratic forms of rank 2 upto isomorphism over ℝ and ℂ

153. Let $T: \mathbb{C}^n \to \mathbb{C}^n$ be a linear transformation, $n \geq 2$. Suppose 1 is the only eigenvalue of T. Which of the following statements are true?

> 1. $T^k \neq I$ for any $k \in \mathbb{N}$ $2.(T – I)^{n-1} = 0$ $3. (T - I)^n = 0$ $4.(T - I)^{n+1} = 0$

154. Let X be a finite dimensional inner product space over $\mathbb C$. Let T : $X \rightarrow X$ be any linear

transformation. Then which of the following statements are true? 1. T is unitary \Rightarrow T is self adjoint

2.T is self adjoint \Rightarrow T is normal

3.T is unitary \Rightarrow T is normal 4.T is normal \Rightarrow T is unitary

155. Let $n \ge 1$ and α , $\beta \in \mathbb{R}$ with $\alpha \neq \beta$. Suppose $A_n(\alpha, \beta) = [a_{ii}]$ is an n x n matrix such that $a_{ii} = \alpha$ and $a_{ii} = \beta$ for $i \neq j$, $1 \leq i, j \leq n$. Let D_n be the determinant of $A_n(\alpha, \beta)$. Which of the following statements are true? 1. D_n = $(\alpha - \beta)D_{n-1}$ + β for n ≥ 2

$$
2. \frac{D_n}{(\alpha - \beta)^{n-1}} = \frac{D_{n-1}}{(\alpha - \beta)^{n-2}} + \beta \text{ for } n \ge 2
$$

3. D_n = $(\alpha + (n-1)\beta)^{n-1}(\alpha - \beta)$ for $n \ge 2$
4. D_n = $(\alpha + (n-1)\beta)(\alpha - \beta)^{n-1}$ for $n \ge 2$

156. Which of the following statements are true? 1. Any two quadratic forms of same rank in

n-variables over ℝ are isomorphic

- 2. Any two quadratic forms of same rank in n-variables over ℂ are isomorphic
- 3. Any two quadratic forms in n-variables are isomorphic over $\mathbb C$
- 4. A quadratic form in 4 variables may be isomorphic to a quadratic from in 10 variables
- **157.** Let T : $\mathbb{R}^4 \to \mathbb{R}^4$ be a linear transformation with characteristic polynomial $(x - 2)^4$ and minimal polynomial $(x - 2)^2$. Jordan canonical form of T can be

JUNE-2020

PART – B

158. Let A be an $n \times n$ matrix such that the set of all its non-zero eigenvalues has exactly r elements. Which of the following statements is true?

OHAN INSTITUTE OF MATHEMAT *Dedicated To Disseminating Mathematical Knowledge*

C

1. rank $A \le r$ 2.If $r = 0$, then rank $A < n - 1$ 3.rank $A \ge r$ $4.A²$ has r distinct non zero eigenvalues **159.** Let A and B be 2×2 matrices. Then which of the following is true? 1. $det(A + B) + det(A - B) = det A + det B$ $2.\text{det}(A + B) + \text{det}(A - B) = 2\text{det} A - 2\text{det} B$ $3.det(A + B) + det(A - B) = 2det A + 2det B$ $4. det(A + B) - det (A - B) = 2 det A - 2 det B$ **160.** If $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $2 -1$ $3 - 2$ $\overline{}$ J \setminus $\overline{}$ \setminus ſ \overline{a} \overline{a} $A = \begin{bmatrix} 2 & 7 \end{bmatrix}$, then A²⁰ equals 1. $\overline{}$ J \setminus $\overline{}$ I \setminus ſ $-40 -39$ 41 40 $2.\Big\vert$ $\overline{}$ $\overline{}$ J \setminus \setminus ſ \overline{a} \overline{a} $40 - 39$ $41 - 40$ 3. $\overline{}$ $\overline{}$ J \setminus I L \setminus ſ $-40 \overline{a}$ $40 - 39$ $41 - 40$ 4. $\overline{}$ $\overline{}$ J \setminus I I \setminus ſ $40 - 39$ 41 40 **161.** Let A be a 2×2 real matrix with det A = 1 and trace $A = 3$. What is the value of trace A^2 ? 1. 2 2.10 3.9 4.7 **162.** For $a, b \in \mathbb{R}$, let $p(x, y) = a^2x_1y_1 + abx_2y_1 + abx_1y_2 + b^2x_2y_2$ $x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$. For what values of a and b does $p: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ define an inner product? 1. $a > 0$, $b > 0$ $2.ab > 0$ $3.a = 0, b = 0$ 4.For no values of a, b **163.** Which of the following real quadratic forms on \mathbb{R}^2 is positive definite? 1. $Q(X, Y) = XY$ $2.Q(X, Y) = X^2 - XY + Y^2$ $3.Q(X, Y) = X^2 + 2XY + Y^2$

PART – C

 $4. Q(X, Y) = X^2 + XY$

- **164.** Let P be a square matrix such that $P^2 = P$. Which of the following statements are true? 1. Trace of P is an irrational number 2. Trace of $P =$ rank of $P =$ 3. Trace of P is an integer
	- 4. Trace of P is an imaginary complex number

165. Let A and B be $n \times n$ real matrices and let $\sqrt{1}$

$$
= \begin{pmatrix} A & B \\ B & A \end{pmatrix}.
$$

Which of the following statements are true?

- 1. If λ is an eigenvalue of A + B then λ is an eigenvalue of C
- 2. If λ is an eigenvalue of A B then λ is an eigenvalue of C
- 3. If λ is an eigenvlaue of A or B then λ is an eigenvalue of C
- 4. All eigenvalues of C are real
- **166.** Let A be an $n \times n$ real matrix. Let b be an $n \times 1$ vector. Suppose $Ax = b$ has no solution.Which of the following statements are true?
	- 1. There exists an $n \times 1$ vector c such that $Ax = c$ has a unique solution
	- 2. There exist infinitely many vectors c such that $Ax = c$ has no solution
	- 3. If y is the first column of A then $Ax = y$ has a unique solution
	- 4. det $A = 0$

167. Let A be an $n \times n$ matrix such that the first 3 rows of A are linearly independent and the first 5 columns of A are linearly independent. Which of the following statements are true? 1. A has atleast 5 linearly independent rows 2. $3 \leq$ rank $A \leq 5$ 3. rank $A \ge 5$

- 4. rank $A^2 \geq 5$
- **168.** Let n be a positive integer and F be a nonempty proper subset of {1, 2, …, n}. Define $\langle x, y \rangle_F = \sum_{k \in F} x_k y_k, x = (x_1, ..., x_n), y = (y_1, ...,$ y_n) $\in \mathbb{R}^n$.

Let $T = \{x \in \mathbb{R}^n : \langle x, x \rangle_F = 0\}$. Which of the following statements are true?

For
$$
y \in \mathbb{R}^n
$$
, $y \neq 0$
\n1. $\inf_{x \in T} \langle x + y, x + y \rangle_F = \langle y, y \rangle_F$
\n2. $\sup_{x \in T} \langle x + y, x + y \rangle_F = \langle y, y \rangle_F$
\n3. $\inf_{x \in T} \langle x + y, x + y \rangle_F < \langle y, y \rangle_F$
\n4. $\sup_{x \in T} \langle x + y, x + y \rangle_F > \langle y, y \rangle_F$

169. Let $v \in \mathbb{R}^3$ be a non-zero vector. Define a linear transformation T : $\mathbb{R}^3 \to \mathbb{R}^3$ by

OHAN INSTITUTE OF MATHEMA *Dedicated To Disseminating Mathematical Knowledge*

, . $(x) = x - 2 \frac{x \cdot v}{v}$ $v \cdot v$ $T(x) = x - 2 \frac{x \cdot v}{v}$, where x . y denotes the standard inner product in \mathbb{R}^3 . Which of the following statements are true? 1. The eigenvalues of T are +1, -1 2. The determinant of T is -1 3. The trace of T is +1 4. T is distance preserving **170.** A quadratic form Q(x,y,z) over ℝ represents 0 non trivially if there exists (a,b,c) $\in \mathbb{R}^3$ \ ${(0,0,0)}$ such that Q(a, b, c) = 0. Which of the following quadratic forms $Q(x, y, z)$ over ℝ represent 0 non trivially? 1. $Q(x, y, z) = xy + z^2$ 2.Q(x, y, z) = x^2 + 3y² – 2z² $3. Q(x, y, z) = x² - xy + y² + z²$ $4. Q(x, y, z) = x^2 + xy + z^2$ **171.** Let Q(x, y, z) be a real quadratic form. Which of the following statements are true? 1. $Q(x_1 + x_2, y, z) = Q(x_1, y, z) + Q(x_2, y, z)$ for all x_1 , x_2 , y_1 , z 2. $Q(x_1 + x_2, y_1 + y_2, 0) + Q(x_1 - x_2, y_1 - y_2,$ 0) = 2Q(x_1 , y_1 , 0) + 2Q(x_2 , y_2 , 0) for all x_1 , x₂, y₁, y₂ 3. $Q(x_1 + x_2, y_1 + y_2, z_1 + z_2) = Q(x_1, y_1, z_1) +$ $Q(x_2, y_2, z_2)$ for at least one choice of x_1 , x₂, y₁, y₂, z₁, z₂ 4. 2Q($x_1 + x_2$, $y_1 + y_2$, 0) + 2Q($x_1 - x_2$, y_1 – y_2 , 0) = Q(x₁, y₁, 0) + Q(x₂, y₂, 0) for all x₁, x₂, y₁, y₂ **JUNE-2021 PART – B 172.** Let A be a 4×4 matrix such that -1, 1, 1, -2 are its eigenvalues. If $B = A^4 - 5A^2 + 5I$, then trace $(A + B)$ equals (1) 0 $(2) -12$ (3) 3 (4) 9 **173.** Let $M = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$. 1 1 3 ² $0 \t -1 \t 0$ \rfloor $\overline{}$ $M = \begin{vmatrix} 1 & 2 & -1 \end{vmatrix}$. Given that 1 is an $\overline{0}$ I \mathbf{r} L $\overline{0}$ eigenvalue of M, which of the following statements is true? (1) -2 is an eigenvalue of M (2) 3 is an eigenvalue of M (3) The eigen space of each eigen value has dimension 1 (4) M is diagonalizable

174. Let A and B be $n \times n$ matrices. Suppose the sum of the elements in any row of A is 2 and the sum of the elements in any column of B is 2. Which of the following matrices is necessarily singular?

(1)
$$
I - \frac{1}{2}BA^T
$$

\n(2) $I - \frac{1}{2}AB$
\n(3) $I - \frac{1}{4}AB$
\n(4) $I - \frac{1}{4}BA^T$

175. Let $V = \{A \in M_{3\times 3}(\mathbb{R}) : A^t + A \in \mathbb{R} \}.$ I) where I is the identity matrix. Consider the quadratic form defined as $q(A) = Trace(A)^2 - Trace$ $(A²)$. What is the signature of the quadratic form? $(1) (+ + + +)$ $(2) (+ 0 0 0)$

- **176.** Let n > 1 be a fixed natural number. Which of the following is an inner product on the vector space of $n \times n$ real symmetric matrices?
	- (1) $\langle A, B \rangle$ = (trace(A)) (trace(B))

 $(3) (+ - - -)$ (4) (---0)

- (2) $\langle A, B \rangle$ = trace (AB)
- (3) $\langle A, B \rangle$ = determinant (AB) (4) $\langle A, B \rangle$ = trace (A) + trace (B)
-
- **177.** Consider the two statements given below:
	- I. There exists a matrix $N \in M_4(\mathbb{R})$ such that {(1, 1, 1, -1), (1, -1, 1, 1)} is a basis of Row(N) and (1, 2, 1, 4) \in Null (N)
	- II. There exists a matrix $M \in M_4(\mathbb{R})$ such that $\{(1, 1, 1, 0)^T, (1, 0, 1, 1)^T\}$ is a basis of Col(M) and $(1, 1, 1, 1)^T$, $(1, 0, 1, 0)^T$ [Null (M)

Which of the following statements is true?

- (1) Statement I is False and Statement II is **True**
- (2) Statement I is True and Statement II is False
- (3) Both Statement I and Statement II are False
- (4) Both Statement I and Statement II are **True**

PART – C

- **178.** Let $M \in M_n(\mathbb{R})$ such that $M \neq 0$ but $M^2 = 0$. Which of the following statements are true? (1) If n is even then
	- $dim(Col)(M)) > dim(Null(M))$ (2) If n is even then
		- $dim(Col(M)) \leq dim(Null(M))$

IOHAN INSTITUTE OF MATHEMAT *Dedicated To Disseminating Mathematical Knowledge*

(3) If n is odd then

- $dim(Col(M)) < dim(Null(M))$ (4) If n is odd then $dim(Col(M)) > dim(Null(M))$
- **179.** Consider the system $2x + ky = 2 - k$ $kx + 2y = k$ $ky + kz = k - 1$ in three unknowns and one real parameter k. For which of the following values of k is the system of linear equations consistent?
	- $(1) 1$ (2) 2
	- $(3) -1$ $(4) -2$
- **180.** Which of the following are inner products on \mathbb{R}^2 ?

(1)
$$
\left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle = x_1y_1 + 2x_1y_2 + 2x_2y_1 + x_2y_2
$$

\n(2) $\left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle = x_1y_1 + x_1y_2 + x_2y_1 + 2x_2y_2$

$$
(3) \left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle = x_1 y_1 + x_1 y_2 + x_2 y_1 + x_2 y_2
$$

$$
(4) \left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle = x_1 y_1 - \frac{1}{2} x_1 y_2 + \frac{1}{2} x_2 y_1 + x_2 y_2
$$

- **181.** Let A be an $m \times n$ matrix such that the first r rows of A are linearly independent and the first s columns of A are linearly independent, where $r < m$ and $s < n$. Which of the following statements are true?
	- (1) The rank of A is atleast max $\{r, s\}$
	- (2) The submatrix formed by the first r rows and the first s columns of A has rank $min\{r, s\}$
	- (3) If $r < s$, then there exists a row among rows r + 1, …, m which together with the first r rows form a linearly independent set
	- (4) If $s < r$, then there exists a column among columns $s + 1$, ..., n which together with the first s columns form a linearly dependent set.
- **182.** Let A be an $n \times n$ matrix. We say that A is diagonalizable if there exists a nonsingular matrix P such that PAP^{-1} is a diagonal matrix. Which of the following conditions imply that A is diagonalizable?
	- (1) There exists integer k such that $A^k = 1$
	- (2) There exists integer k such that A^k is nilpotent
	- (3) A^2 is diagonalizable
- (4) A has n linearly independent eigenvectors
- **183.** It is known that $X = X_0 \in M_2(\mathbb{Z})$ is a solution of $AX - XA = A$ for some

$$
A \in \left\{ \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \right\}
$$

Which of the following values are NOT possible for the determinant of X_0 ?
(1) det(X_0) = 0 (2) det(X_0) = 2 (1) det(X_0) = 0 (2) det(X_0) = 2
(3) det (X_0) = 6 (4) det(X_0) = 10 (3) det $(X_0) = 6$

- **184.** Let A be an $m \times m$ matrix with real entries and let x be an $m \times 1$ vector of unknowns. Now consider the two statements given below:
	- I: There exists non-zero vector $b_1 \in \mathbb{R}^m$ such that the linear system $Ax = b_1$ has NO solution
	- II: There exist non-zero vectors $b_2, b_3 \in \mathbb{R}^m$, with

 $b_2 \neq cb_3$ for any $c \in \mathbb{R}$, such that the linear systems $Ax = b_2$ and $Ax = b_3$ have solutions. Which of the following statements are true?

- (1) II is TRUE whenever A is singular (2) I is TRUE whenever A is singular
- (3) Both I and II can be TRUE simultaneously
- (4) If $m = 2$, then at least one of I and II is FALSE

JUNE-2022

PART – B

- **185.** Let A = $(a_{i,j})$ be a real symmetric 3 \times 3 matrix. Consider the quadratic form $Q(x_1,$ x_2, x_3 = x^t Ax where $x = (x_1, x_2, x_3)^t$. Which of the following is true?
	- (1) If $Q(x_1, x_2, x_3)$ is positive definite, then $a_{i,j} > 0$ for all $i \neq j$.
	- (2) If $Q(x_1, x_2, x_3)$ is positive definite, then $a_{i,j} > 0$ for all i.
	- (3) If $a_{i,j} > 0$ for all $i \neq j$, then $Q(x_1, x_2, x_3)$ is positive definite.
	- (4) If $a_{i,j} > 0$ for all i, then $Q(x_1, x_2, x_3)$ is positive definite.
- **186.** Let ℝ be the field of real numbers. Let V be the vector space of real polynomials of degree at most 1. Consider the bilinear form

$$
\langle, \rangle: V \times V \to \mathbb{R},
$$

given by $\langle f, g \rangle = \int_0^1 f(x) g(x) dx$.

INSTITUTE OF MATHEMAT *Dedicated To Disseminating Mathematical Knowledge*

Which of the following is true?

- (1) For all non-zero real numbers a, b, there exists a real number c such that the vectors $ax + b$, $x + c \in V$ are orthogonal to each other.
- (2) For all non-zero real numbers b, there are infinitely many real numbers c such that the vectors $x +$ b, $x + c \in V$ are orthogonal to each other.
- (3) For all positive real numbers c, there exist infintely many real numbers a, b such that the vectors $ax + b$, $x + c \in$ V are orthogonal to each other.
- (4) For all non-zero real numbers b, there are infinitely many real numbers c such that the vectors b, $x + c \in V$ are orthogonal to each other.
- **187.** Suppose A is a real $n \times n$ matrix of rank r. Let V be the vector space of all real $n \times n$ matrices X such that $AX = 0$. What is the dimension of V? (1) r (2) nr (3) n^2r (4) $n^2 - nr$
- **188.** Suppose A and B are similar real matrices, that is, there exists an invertible matrix S such that $A = SBS^{-1}$. Which of the following need not be true?
	- (1) Transpose of A is similar to the transpose of B
	- (2) The minimal polynomial of A is same as the minimal polynomial of B
	- (3) trace (A) = trace (B)
	- (4) The range of A is same as the range of B
- **189.** Let A be an invertible 5×5 matrix over a field F. Suppose that characteristic polynomials of A and A^{-1} are the same. Which of the following is necessarily true? (1) det $(A)^2 = 1$ $= 1$ (2) det $(A)^{5} = 1$ (3) trace $(A)^2 = 1$ $= 1$ (4) trace $(A)^{5} = 1$

PART – C

190. Let W be the space of C-linear combinations of the following functions $f_1(z)$ = sinz, $f_2(z)$ = cosz, $f_3(z)$ = sin(2z), $f_4(z) = \cos(2z)$ Let T be the linear operator on W given by complex differentiation. Which of the following statements are true? (1) Dimension of W is 3 (2) The span of f_1 and f_2 is Jordan block of T

(3) T has two Jordan blocks

- (4) T has four Jordan blocks
- **191.** Let V be vector space of polynomials $f(X, Y) \in \mathbb{R}[X, Y]$ with (total) degree less than 3. Let $T : V \rightarrow V$ be the linear transformation given by $\frac{6}{5}$. *x* $\frac{\partial}{\partial x}$. Which of the following statements are true? (1) The nullity of T is atleast 3 (2) The rank of T is atleast 4 (3) The rank of T is atleast 3 (4) T is invertible
- **192.** For a positive integer $n \ge 2$, let A be an

 $n \times n$ matrix with entries in ℝ such that A^{n^2} has rank zero. Let 0_n denote the n \times n

matrix with all entries equal to 0. Which of the following statements are equivalent to the statement that A has n linearly indepednent eigenvectors?

(1)
$$
A^n = 0_n
$$

\n(3) $A = 0_n$
\n(4) $A^2 = 0_n$

193. Let P_n be the vector space of real polynomials with degree at most n. Let \langle , \rangle be an inner product on P_n with respect to which $\left\{\begin{array}{c} \\ \end{array}\right\}$ $\left\{1, x, \frac{1}{2!}x^2, ..., \frac{1}{n!}x^n\right\}$ *n* $x \neq x$! $\frac{1}{1}$ 2! $\left\{1, x, \frac{1}{x}, x^2, ..., \frac{1}{x^n}\right\}$ is an orthonormal

basis of P_n .

Let $f = \sum_i \alpha_i x^i$, $g = \sum_i \beta_i x^i \in P_n$. Which of the following statements are true?

- (1) $\langle f, g \rangle = \sum_i (i!) \alpha_i \beta_i$ defines one such inner product, but there is another such inner product.
- (2) $\langle f, g \rangle = \sum_i (i!) \alpha_i \beta_i$.
- (3) $\langle f, g \rangle = \sum_i (i!)^2 \alpha_i \beta_i$ defines one such inner product, but there is another such inner product.
- (4) $\langle f, g \rangle = \sum_i (i!)^2 \alpha_i \beta_i$
- **194.** Let U and V be the subspaces of \mathbb{R}^3 defined by

$$
U = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid 2x + 3y + 4z = 0 \right\}.
$$

$$
V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x + 2y + 5z = 0 \right\}.
$$

INSTITUTE OF MATHEMA *Dedicated To Disseminating Mathematical Knowledge*

Which of the following statements are true? (1) There exists an invertible linear transformation T : $\mathbb{R}^3 \to \mathbb{R}^3$ such that $T(U) = V$. (2) There does not exists an invertible linear transformation T : $\mathbb{R}^3 \to \mathbb{R}^3$ such that $T(V) = U$. (3) There exists a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that T(U) $\cap V \neq \{0\}$ and the characteristic polynomial of T is not the product of linear polynomials with real coefficients. (4) There exists a linear transformation T : $\mathbb{R}^3 \to \mathbb{R}^3$ such that T(U) = V and the characteristic polynomial of T vanishes at 1. **195.** Let A be an $n \times n$ matrix with entries in \mathbb{R} that A and A^2 are of same rank. Consider linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ defined by $T(v) = A(v)$ for all $v \in \mathbb{R}^n$. Which of the following statements are true. (1) The Kernels of T and T∘T are the same (2) The Kernels of T and T∘T are of equal dimensions (3) A must be invertible (4) $I_n + A$ must be invertible, where I_n denotes at $n \times n$ identity matrix **196.** On the complex vector space \mathbb{C}^{100} with standard basis $\{e_1, e_2, ..., e_{100}\}$, consider the bilinear form $B(x, y) = \sum_i x_i y_i$, where x_i and y_i are the coefficients of e_i in x and y respectively. Which of the following statements are true? (1) B is non-degenerate (2) Restriction of B to all non-zero subspaces is non-degenerate (3) There is a 51 dimensional subspace W of \mathbb{C}^{100} such that the restriction B : $W \times W \rightarrow \mathbb{C}$ is the zero map (4) There is a 49 dimensional subspace W of \mathbb{C}^{100} such that the restriction B: $W \times W \rightarrow \mathbb{C}$ is the zero map **197.** For a positive integer n \geq 2, let $M_n(\mathbb{R})$ denote the vector space of $n \times n$ matrices with entries in ℝ. Which of the following statements are true?

- (1) The vector space $M_n(\mathbb{R})$ can be expressed as the union of a finite collection of its proper subspaces.
- (2) Let A be an element of $M_n(\mathbb{R})$. Then, for any real number x and $\epsilon > 0$, there exists a real number $y \in (x - \varepsilon, x + \varepsilon)$ such that det(y| + A) \neq 0.
- (3) Suppose A and B are two elements of $M_n(\mathbb{R})$ such that their characteristic polynomials are equal. If $A = C^2$ for some $C \in M_n(\mathbb{R})$, then $B = D^2$ for some $D \in M_n(\mathbb{R})$.
- (4) For any subspace W of $M_n(\mathbb{R})$, there exists a linear transformation T : $M_n(\mathbb{R}) \to M_n(\mathbb{R})$ with W as its image.

JUNE-2023

PART – B

198. Let T be a linear operator on \mathbb{R}^3 . Let $f(X) \in$

ℝ[X] denote its characteristic polynomial. Consider the following statements.

- (a) Suppose T is non-zero and 0 is an eigen value of T. If we write $f(X) =$ Xg(X) in ℝ[X], then the linear operator g(T) is zero.
- (b) Suppose 0 is an eigenvalue of T with atleast two linearly independent eigen vectors. If we write $f(X) = Xg(X)$ in $\mathbb{R}[X]$, then the linear operator $g(T)$ is zero.

Which of the following is true?

- (1) Both (a) and (b) are true.
- (2) Both (a) and (b) are false.
- (3) (a) is true and (b) is false.
- (4) (a) is false and (b) is true.
- **199.** Let $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$ denote vectors in \mathbb{R}^n for a fixed n ≥ 2 . Which of the following defines an inner product on ℝⁿ?

(1)
$$
\langle x, y \rangle = \sum_{i, j=1}^{n} x_i y_j
$$

\n(2) $\langle x, y \rangle = \sum_{i, j=1}^{n} (x_i^2 + y_j^2)$
\n(3) $\langle x, y \rangle = \sum_{j=1}^{n} j^3 x_j y_j$
\n(4) $\langle x, y \rangle = \sum_{j=1}^{n} x_j y_{n-j+1}$

200. Consider the quadratic form Q(x, y, z) associated to the matrix

OHAN INSTITUTE OF MATHEMA

Dedicated To Disseminating Mathematical Knowledge . $0 \t 0 \t -2$ 1 1 0 1 1 0 $\overline{}$ $\overline{}$ $\overline{0}$ $\overline{}$ L $\overline{ }$ $B =$ 1 \overline{a} Let $S =$ $\overline{}$ $\overline{}$ $\overline{}$ J $\overline{}$ L $\overline{ }$ $\overline{}$ L $\overline{}$ *c b a* $\in \mathbb{R}^{3} | Q (a, b, c) = 0$ Which of the following statements is FALSE? (1) The intersection of S with the xyplane is a line (2) The intersection of S with the xzplane is an ellipse (3) S is the union of two planes (4) Q is a degenerate quadratic form **201.** Let $l \geq 1$ be a positive integer. What is the dimension of the ℝ-vector space of all polynomials in two variables over ℝ having a total degree of at most *l* ? (1) $l + 1$ $(l-1)$ (3) $l(l+1)/2$ (4) $(l+1)(l+2)/2$ **202.** Let A be a 3×3 matrix with real entries. Which of the following assertions is FALSE? (1) A must have a real eigenvalue (2) If the determinant of A is 0, then 0 is an eigenvalue of A (3) If the determinant of A is negative and 3 is an eigenvalue of A, the A must have three real eigenvalues (4) If the determinant of A is positive and 3 is an eigenvalue of A, then A must have three real eigenvalues **203.** Let A be a 3×3 real matrix whose characteristic polynomial p(T) is divisible by T^2 . Which of the following statements is true? (1) The eigenspace of A for the eigenvalue 0 is two-dimensional (2) All the eigenvalues of A are real (3) $A^3 = 0$ (4) A is diagonalizable

PART – C

204. Let V be the vector space of all polynomials in one variable of degree at most 10 with real coefficients. Let W_1 be the subspace of V consisting of subspace of V consisting of

polynomials of degree at most 5 and let $W₂$ be the subspace of V consisting of polynomials such that the sum of their coefficients is 0. Let W be the smallest subspace of V containing both W_1 and W_2 . Which of the following statements are true?

(1) The dimension of W is at most 10

- $(2) W = V$
- (3) $W_1 \subset W_2$
- (4) The dimension of $W_1 \cap W_2$ is at most 5
- **205.** Let V be a finite dimensional real vector space and T_1 , T_2 be two nilpotent operators on V. Let $W_1 = \{v \in V : T_1(v) =$ 0} and $W_2 = \{v \in V : T_2(v) = 0\}$. Which of the following statements are FALSE?
	- (1) If T_1 and T_2 are similar, then W_1 and $W₂$ are isomorphic vector spaces
	- (2) If W_1 and W_2 are isomorphic vector spaces, then T_1 and T_2 have the same minimal polynomial
	- (3) If $W_1 = W_2 = V$, then T_1 and T_2 are similar
	- (4) If W_1 and W_2 are isomorphic, then T_1 and $T₂$ have the same characteristic polynomial

206. Consider the following quadratic forms

over ℝ (a) $6X^2 - 13XY + 6Y^2$,

- (b) $X^2 XY + 2Y^2$,
- (c) $X^2 XY 2Y^2$.

Which of the following statements are true?

- (1) Quadratic forms (a) and (b) are equivalent
- (2) Quadratic forms (a) and (c) are equivalent
- (3) Quadratic form (b) is positive definite
- (4) Quadratic form (c) is positive definite

207. Suppose A is a 5×5 block diagonal real matrix with diagonal blocks

$$
\begin{pmatrix} e & 1 \ 0 & e \end{pmatrix}, \begin{pmatrix} e & 1 & 0 \ 0 & e & 0 \ 0 & 0 & e \end{pmatrix}.
$$

Which of the following statements are true?

(1) The algebraic multiplicity of e in A is 5

(2) A is not diagonalizable

- (3) The geometric multiplicity of e in A is 3
- (4) The geometric multiplicity of e in A is 2

TITUTE OF MATHEMA *Dedicated To Disseminating Mathematical Knowledge*

- **208.** Let T: $\mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation satisfying T 3 – 3T 2 = -2I, where I : $\mathbb{R}^3 \rightarrow \mathbb{R}^3$ is the identity transformation. Which of the following statements are true?
	- (1) \mathbb{R}^3 must admit a basis B₁ such that the matrix of T with respect to B_1 is symmetric.
	- (2) \mathbb{R}^3 must admit a basis B₂ such that the matrix of T with respect to B_2 is upper triangular.
	- (3) \mathbb{R}^3 must contain a non-zero vector v such that $Tv = v$.
	- (4) \mathbb{R}^3 must contain two linearly independent vectors v_1 , v_2 such that $Tv_1 = v_1$ and $Tv_2 = v_2$.
- **209.** Let B be a 3×5 matrix with entries from Q. Assume that $\{v \in \mathbb{R}^5 \mid Bv = 0\}$ is a three-dimensional real vector space. Which of the following statements are true?
	- (1) { $v \in \mathbb{Q}^5$ | Bv = 0} is a threedimensional vector space over \mathbb{O} .
	- (2) The linear transformation T : $\mathbb{Q}^3 \rightarrow$ \mathbb{Q}^5 given by T(v) = B^tv is injective
	- (3) The column span of B is twodimensional
	- (4) The linear transformation T : $\mathbb{Q}^3 \rightarrow$ \mathbb{Q}^3 given by T(v) = BB^tv is injective
- **210.** Let V be the real vector space of real polynomials in one variable with degree less than or equal to 10 (including the zero polynomial). Let $T: V \rightarrow V$ be the linear map defined by $T(p) = p'$, where p' denotes the derivative of p. Which of the followng statements are correct?
	- (1) rank $(T) = 10$
	- (2) determinant $(T) = 0$
	- (3) trace $(T) = 0$
	- (4) All the eigenvalues of T are equal to 0
- **211.** Let V be an inner product space and let v_1 , $v_2, v_3 \in V$ be an orthogonal set of vectors. Which of the following statements are true?
- (1) The vectors $v_1 + v_2 + 2v_3$, $v_2 + v_3$, v_2 + 3 v_3 can be extended to a basis of V
- (2) The vectors $v_1 + v_2 + 2v_3$, $v_2 + v_3$, v_2 + 3 v_3 can be extended to an orthogonal basis of V
- (3) The vectors $v_1 + v_2 + 2v_3$, $v_2 + v_3$, $2v_1 + v_2 + 3v_3$ can be extended to a basis of V
- (4) The vectors $v_1 + v_2 + 2v_3$, $2v_1 + v_2 +$ v_3 , $2v_1 + v_2 + 3v_3$ can be extended to a basis of V

DECEMBER-2023

PART – B

212. For
$$
a \in \mathbb{R}
$$
, let

$$
A_a = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & a \end{pmatrix}
$$
 Which one of the

following statements is true?

- (1) A_a is positive definite for all $a < 3$.
- (2) A_a is positive definite for all a $>$ 3.
- (3) A_a is positive definite for all $a \ge -2$.
- (4) A_a is positive definite only for finitely many values of a.
- **213.** We denote by I_n the $n \times n$ identity matrix. Which one of the following statements is true?
	- (1) If A is a real 3×2 matrix and B is a real 2 \times 3 matrix such that BA = I_2 , then $AB = I_3$.
	- (2) Let A be the real matrix 1 2 3 3 $\Big)$. Then $\bigg)$ I I \setminus ſ

there is a matrix B with integer entries such that $AB = I_2$.

(3) Let A be the matrix $\overline{}$ $\overline{}$ $\big)$ \setminus I I \setminus ſ 1 2 3 1 with

entries in ℤ/6ℤ. Then there is a matrix B with entries in $Z/6Z$ such that AB = I_2 .

- (4) If A is a real non-zero 3×3 diagonal matrix, then there is a real matrix B such that $AB = I_3$.
- **214.** Which one of the following statements is FALSE?
	- (1) The product of two 2×2 real matrices of rank 2 is of rank 2.

INSTITUTE OF MATHEMAT *Dedicated To Disseminating Mathematical Knowledge*

- (2) The product of two 3×3 real matrices of rank 2 is of rank atmost 2.
- (3) The product of two 3×3 real matrices of rank 2 is of rank atleast 2.
- (4) The product of two 2×2 real matrices of rank 1 can be the zero matrix.
- **215.** Let $A = (a_{i,j})$ be the $n \times n$ real matrix with $a_{i,j}$ = ij for all $1 \le i, j \le n$. If $n \ge 3$, which one of the following is an eigenvalue of A? $(1) 1$ (2) n (3) $n(n + 1)/2$ (4) $n(n + 1)$ (2n + 1)/6
- **216.** Let A be an $n \times n$ matrix with complex entries. If $n \geq 4$, which one of the following statements is true?
	- (1) A does not have any non-zero invariant subspace in \mathbb{C}^n .
	- (2) A has an invariant subspace in \mathbb{C}^n of dimension $n - 3$.
	- (3) All eigenvalues of A are real numbers.
	- (4) A^2 does not have any invariant subspace in \mathbb{C}^n of dimension n - 1.
- **217.** Let (-, -) be a symmetric bilinear form on \mathbb{R}^2 such that there exists non-zero v, w \in \mathbb{R}^2 such that $(v, v) > 0 > (w, w)$ and (v, w) = 0. Let A be the 2×2 real symmetric matrix representing this bilinear form with respect to the standard basis. Which one of the following statements is true? (1) $A^2 = 0$.
	- (2) rank $A = 1$.
	- (3) rank $A = 0$.
	- (4) There exists $u \in \mathbb{R}^2$, $u \neq 0$ such that $(u, u) = 0.$

PART – C

- **218.** Consider the quadratic form $Q(x, y, z) = x^2$ + xy + y^2 + xz + yz + z^2 . Which of the following statements are true?
	- (1) There exists a non-zero $u \in \mathbb{Q}^3$ such that $Q(u) = 0$.
	- (2) There exists a non-zero $u \in \mathbb{R}^3$ such that $Q(u) = 0$.
	- (3) There exist a non-zero $u \in \mathbb{C}^3$ such that $Q(u) = 0$.
	- (4) The real symmetric 3×3 matrix A which satisfies

$$
Q(x, y, z) = [x \ y \ z] A \begin{bmatrix} x \\ y \\ z \end{bmatrix}
$$
 for all x,

 $y, z \in \mathbb{R}$ is invertible.

- **219.** Let F be a finite field and V be a finite dimensional non-zero F-vector space. Which of the following can NEVER be true?
	- (1) V is the union of 2 proper subspaces.
	- (2) V is the union of 3 proper subspaces.
	- (3) V has a unique basis.
	- (4) V has precisely two bases.
- **220.** Suppose a 7×7 block diagonal complex matrix A has blocks

- $\overline{}$ \setminus I ſ $2\pi i$ 1 0
	- $\overline{}$ 0 $2\pi i$ 0 along the diagonal.
- *i* I $\overline{\mathcal{L}}$ $0 \quad 0$

 \mathbf{r}

Which of the following statements are true?

- (1) The characteristic polynomial of A is $x^3(x - 1) (x - 2\pi i)^3$.
- (2) The minimal polynomial of A is $x^2(x -$ 1) $(x - 2\pi i)^3$.
- (3) The dimensions of the eigenspaces for 0, 1, $2\pi i$ are 2, 1, 3 respectively.
- (4) The dimensions of the eigenspaces for 0, 1, $2\pi i$ are 2, 1, 2 respectively.
- **221.** Let T : $\mathbb{R}^5 \rightarrow \mathbb{R}^5$ be a \mathbb{R} -linear transformation. Suppose that (1, -1,2,4,0), (4,6,1,6,0) and (5,5,3,9,0) span the null space of T. Which of the following statements are true?
	- (1) The rank of T is equal to 2.
	- (2) Suppose that for every vector $v \in \mathbb{R}^5$, there exists n such that $T^{n}v = 0$. Then T^2 must be zero.
	- (3) Suppose that for every vector $v \in \mathbb{R}^5$, there exists n such that $T^nv = 0$. Then T^3 must be zero.
	- (4) (-2, -8, 3, 2, 0) is contained in the null space of T.
- **222.** Let X, Y be two $n \times n$ real matrices such that $XY = X^2 + X + I$. Which of the following statements are necessarily true?

TUTE OF MATHEMA

Dedicated To Disseminating Mathematical Knowledge

(1) X is invertible (2) X + I is invertible

(3) XY = YX (4) Y is invertible (4) Y is invertible **223.** Consider $A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$. 2 3 1 4 $\overline{}$ J $\overline{}$ \mathbf{r} L $A = \begin{bmatrix} 1 & 4 \\ 2 & 8 \end{bmatrix}$. Suppose $A^5 - 4A^4 7A^3 + 11A^2 - A - 10I = aA + bI$ for some a, $b \in \mathbb{Z}$. Which of the following statements are true? (1) a + b > 8 (2) a + b < 7 (3) $a + b$ is divisible by 2 (4) $a > b$ **224.** Let A be an $n \times n$ real symmetric matrix. Which of the following statements are necessarily true? (1) A is diagonalizable. (2) If $A^k = I$ for some positive integer k, then $A^2 = I$. (3) If $A^k = 0$ for some positive integer k, then $A^2 = 0$. (4) All eigenvalues of A are real. **225.** Let A be a real diagonal matrix with characteristic polynomial λ^3 - $2\lambda^2$ - λ + 2. Define a bilinear form $\langle v, w \rangle = v^t A w$ on \mathbb{R}^3 . Which of the following statements are true? (1) A is positive definite. (2) A² is positive definite. (3) There exists a non-zero $v \in \mathbb{R}^3$ such that $\langle v, v \rangle = 0$. (4) rank $A = 2$.

MOHAN INSTITUTE OF MATHEMATICS

Dedicated To Disseminating Mathematical Knowledge

LINEAR ALGEBRA PREVIOUS YEAR PAPERS

ANSWERS

