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MODERN ALGEBRA  
 

CLASS ASSIGNMENT  
 

DECEMBER - 2014 
 

PART - B 
 

1. The number of conjugacy classes in the 
permutation group S6 is 
1. 12  2. 11        3. 10  4. 6 
 

2. Find the degree of the field extension 

ℚ  84 2,2,2  over ℚ. 

1. 4  2. 8            3. 14  4. 32 
 

3. Let G be the Galois group of a field with nine 
elements over its subfield with three elements. 
Then the number of orbits for the action of G 
on the field with nine elements is 
1. 3  2. 5           3. 6  4. 9 
 

4. The number of surjective maps from a set of 4 
elements to a set of 3 elements is 
1. 36  2. 64       3. 69  4. 81 
 

5. In the group of all invertible 44  matrices 
with entries in the field of 3 elements, any      
3-Sylow subgroup has cardinality 
1. 3  2. 81       3. 243         4. 729 
 

PART - C 
 

6. Let G be a nonabelian group. Then, its order 
can be         
1. 25  2. 55         3. 125   4. 35 
 

7. Let ℝ[x] be the polynomial ring over ℝ in one 

variable. Let I  ℝ [x] be an ideal. Then  

1. I  is a maximal ideal if and only if I is a 
non-zero prime ideal 

2. I  is a maximal ideal if and only if the 

quotient ring ℝ[x]/ I  is isomorphic to ℝ. 

3. I  is a maximal ideal if and only if 

)),(( xfI   where f(x) is a non–constant 

irreducible polynomial over ℝ 

4. I  is a maximal ideal if and only if there 
exists a non-constant polynomial 

Ixf )(  of degree 2  

 
8. Let G be a group of order 45. Then 

1. G has an element of order 9 
2. G has a subgroup of order 9 
3. G has a normal subgroup of order 9 

4. G has a normal subgroup of order 5 
 

9. Which of the following is/are true? 
1. Given any positive integer n, there exists a 

field extension of ℚ of degree n. 
2. Given a positive integer n, there exist 

fields F and K such that KF   and K is 

Galois over F with [K:F]=n. 

3. Let K be a Galois extension of ℚ with 

[K:ℚ] = 4. Then there is a field L such that 

K  L  ℚ, [L : ℚ] = 2  and L is a Galois 

extension of ℚ. 

4. There is an algebraic extension K of ℚ 

such that [K:ℚ] is not finite. 
 

JUNE – 2015 
 

PART - B 
 

10. Up to isomorphism, the number of abelian 
groups of order 108 is: 
1. 12    2. 9 
3. 6    4. 5 

 
11. Let D be the set of tuples (w1,……,w10),where 

  101,3,2,1  iwi  and wi + wi+1 is an 

even number for each i with 1≤ i ≤ 9. 
Then the number of elements in D is. 
1. 2

11
+1    2. 2

10
+1 

3. 3
10

+1    4. 3
11

+1 
 
12. The number of subfields of a field of cardinality 

2
100

 is 
1. 2    2. 4 
3. 9    4. 100 

 

13. Let R be the ring ℤ[x]/((x
2
+x+1)(x

3
+x+1)) and I 

be the ideal generated by 2 in R. What is the 
cardinality of the ring R? 
1. 27    2. 32 
3. 64    4. Infinite. 
 

PART - C 
 

 
14. Which of the following polynomials are 

irreducible in the ring ℤ[x] of polynomials in 
one variable with integer coefficients? 
1. x

2
 – 5 

2. 1+(x+1) + (x+1)
2
+ (x+1)

3
+ (x+1)

4
 

3. 1+ x + x
2
+ x

3 
+ x

4
 

4. 1+ x + x
2
+ x

3
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15. Determine which of the following polynomials 
are irreducible over the indicated rings. 

1. x
5
- 3x

4
+ 2x

3
- 5x + 8 over ℝ. 

2. x
3
+ 2x

2
+ x+ 1 over ℚ. 

3. x
3
+ 3x

2
- 6x +3 over ℤ. 

4. x
4
+ x

2
 + 1 over ℤ/2ℤ.  

 
16. Let σ:{1,2,3,4,5} → {1,2,3,4,5} be a 

permutation (one - to – one and onto function) 

such that σ
-1

( j) ≤ σ( j)  j, 1 ≤ j ≤ 5. 
Then which of the following are true? 
1.  σ ◦ σ(j) = j  for all j, 1 ≤ j ≤ 5. 
2.  σ

-1
( j) = σ( j)  for all j, 1 ≤ j ≤ 5. 

3.  The set {k: σ(k) ≠ k} has an even 
number of elements. 

4.  The set {k: σ(k) = k} has an odd number 
of elements. 

 
17. If x,y and z are elements of a group such that 

xyz = 1, then 
1. yzx = 1  2. yxz = 1 
3. zxy = 1  4. zyx = 1 
 

18. Which of the following primes satisfy the 
congruence a

24
 ≡ 6a + 2 mod 13? 

1. 41 2. 47        3. 67 4. 83 
 

19. Let C([0,1]) be the ring of all real valued 
continous functions on [0,1]. Which of the 
following statements are true? 
1.  C([0,1]) is an integral domain. 
2.  The set of all functions vanishing at 0 is a 

maximal ideal. 
3.  The set of all functions vanishing at both 

0 and 1 is a prime ideal.  
4.  If fC([0,1]) is such that (f(x))

n
 = 0 for all 

x [0,1] for some n > 1, then f(x) = 0 for 
all x [0,1]. 

 
20. Which of the following cannot be the class 

equation of a group of order 10? 
1. 1 + 1 + 1 + 2 + 5 = 10. 
2. 1 + 2 + 3 + 4 = 10. 
3. 1 + 2 + 2 + 5 = 10. 
4. 1 + 1 + 2 + 2 + 2 + 2 = 10. 

 
DEC – 2015 

 
PART - B 

 
21. Which of the following is an irreducible factor 

of x
12

 – 1 over ℚ? 
1. x

8
 + x

4
 + 1.

 

2. x
4
 + 1

 

3. x
4
 – x

2
 + 1.

 

4. x
5
 – x

4
 + x

3
 – x

2
 + x – 1.

 

22. Let R be a Euclidean domain such that R is 
not a field. Then the polynomial ring R[X} is 
always  
1.  a Euclidean domain 
2.  a principal ideal domain, but not a 

Euclidean domain.
 

3.  a unique factorization domain, but not a 
principal ideal domain.

 

4.  not a unique factorization domain.
 

 
23. What is the total number of positive integer 

solutions to the equation 

(x1 + x2 + x3) (y1 + y2 + y3 + y4) = 15?

 

1. 1  2. 2        3. 3  4. 4 
 
24. A group G is generated by the elements x, y 

with the relations x
3
 = y

2
 = (xy)

2
 = 1. The order 

of G is  
1. 4. 2. 6.       3. 8.  4.12. 

 
25. Let G be a simple group of order 60. Then 

1. G has six Sylow-5 subgroups  
2. G has four Sylow-3 subgroups. 
3. G has a cyclic subgroup of order 6. 
4. G has a unique element of order 2. 
 

PART - C 
 

26. Let .
10

2
sin

10

2
cos


 i  

Let K = ℚ (
2
) and let L = ℚ(). Then  

1. [L : ℚ] = 10  2. [L : K] = 2  

3. [K : ℚ] = 4   4. L = K 
 
27. Let an denote the number of those 

permutations  on {1, 2, …, n} such that  is a 
product of exactly two disjoint cycles. Then:  
1. a5 = 50  2. a4 = 14 
3. a5 = 40  4. a4 = 11 

 
28. Which of the following quotient rings are 

fields? 
1.  F3[X]/(X

2
+X+1), where F3 is the finite 

field with 3 elements. 

2.  ℤ[X]/(X – 3) 

3.  ℚ[X]/(X
2
 + X + 1) 

4.  F2[X]/(X
2
 + X + 1) where F2 is the finite 

field with 2 elements. 
 
29. Which of the following intervals contains an 

integer satisfying the following three 
congruences:  
x≡2 (mod 5), x≡3 (mod 7) and x ≡ 4 (mod 11). 
1. [401, 600]  2. [601, 800] 
3. [801, 1000]  4. [1001, 1200] 
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30. Let A denote the quotient ring ℚ[X]/(X
3
). Then  

1.  There are exactly three distinct proper 
ideals in A. 

2.  There is only one prime ideal in A. 
3.  A is an integral domain 

4.  Let f, g be in ℚ[X] such that 0.
____

gf in 

A. Here 
__

f  and 
__

g   denote the image of f 

and g respectively in A. Then f(0).g(0)= 0. 
 

31. For n  1, let (ℤ/nℤ)* be the group of units of 

(ℤ/nℤ). Which of the following groups are 
cyclic? 

1. (ℤ/10ℤ)*   2. (ℤ/2
3
ℤ)* 

3. (ℤ/100ℤ)*  4. (ℤ/163ℤ)* 
 

JUNE – 2016 
 

PART - B 
 

32. Which of the following statements is FALSE? 
 There exists an integer x such that: 

1. x
 
23 mod 1000 and z

 
45 mod 6789 

2. x
 
23 mod 1000 and z

 
54 mod 6789 

3. x
 
32 mod 1000 and z

 
54 mod 9876 

4. x
 
32 mod 1000 and z

 
44 mod 9876 

 

33. Let *)25/( ZZG  be the group of units (i.e. 

the elements that have a multiplicative 
inverse) in the ring (Z/25Z). Which of the 
following is a generator of G? 
1. 3   2. 4 
3. 5   4. 6 

 
34. Let  p≥5 be a prime. Then 

 1. p pF F has at least five subgroups of 

order p. 

 2.  Every subgroup of 
p pF F is of the form 

1 2H H  where 1 2,H H are subgroup of 

pF . 

 3.  Every subgroup of pp FF 
 
is an ideal of 

the ring pp FF   

 4.  The ring pp FF  is a field. 

 
35. Let p be a prime number. How many distinct 

sub – rings (with unity) of cardinality p does 

the field 2p
F have? 

1. 0  2. 1          3. p  4. p
2
 

 

PART - C 
 
36. Consider the symmetric group S20 and its 

subgroups A20 consisting of all even 
permutations. Let H be a 7-Sylow subgroup of 
A20. Pick each correct statement from below. 
1.  |H| = 49. 
2.  H must be cyclic. 
3.  H is a normal subgroup of A20. 
4.  Any 7-Sylow subgroup of S20 is a subset 

of A20. 
 
37. Let R be a commutative ring with unity, such 

that R[X] is a UFD. Denote the ideal (X) of 
R[X] by I. Pick each correct statement from 
below. 
1.  l is prime. 
2.  If l is maximal, then R[X] is a PID. 
3.  If R[X] is a Euclidean domain, then l is 

maximal. 
4.  If R[X] is a PID, then it is a Euclidean 

domain. 
 

38. Let G be a finite abelian group of order n. Pick 
each correct statement from below. 
1.  If d divides n, there exists a subgroup of 

G of order d. 
2.  If d divides n, there exists an element of 

order d in G. 
3. If every proper subgroup of G is cyclic, 

then G is cyclic. 
4.  If H is a subgroup of G, there exists a 

subgroup N of G such that G/N   H. 
 
39. Let p be a prime, Pick each correct statement 

from below. Up to isomorphism. 
1.  There are exactly two abelian groups of 

order p
2
. 

2.  There are exactly two groups of order 
p

2
. 

3.  There are exactly two commutative rings 
of order p

2
. 

4.  There is exactly one integral domain of 
order p

2
. 

 

40. Let f(x) ℤ[x] be a polynomial of degree ≥ 2. 
Pick each correct statement from below. 

1.  If f(x) is irreducible in ℤ[x], then it is 

irreducible in ℚ[x]. 

2.  If f(x) is irreducible in ℚ[x], then it is 

irreducible in ℤ[x]. 

3.  If f(x) is irreducible in ℤ[x], then for all 

primes p the reduction 
______

)(xf  of f(x) 

modulo p is irreducible in Fp[x].  
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4.  If f(x) is irreducible in ℤ[x], then it is 

irreducible in ℝ[x]. 
 

DEC – 2016 
 

PART - B 
 

41. (n-1)! -1 (mod n). We can conclude that  
1. n = p

k
 where p is prime, k > 1. 

2. n = pq where p and q are distinct primes. 
3. n = pqr where p, q, r are distinct primes. 
4. n = p where p is a prime. 

 
42. Let Sn denote the permutation group on n 

symbols and An be the subgroup of even 
permutations. Which of the following is true? 
1. There exists a finite group which is not a 

subgroup of Sn for any n  1. 
2. Every finite group is a subgroup of An for 

some n  1. 
3. Every finite group is a quotient of An for 

some n  1. 
4. No finite abelian group is a quotient of Sn 

for n > 3. 
 

PART - C 
 
43. Consider the following subsets of the group of 

22  non-singular matrices over ℝ: 

G=  

H= .  

Which of the following statements are correct? 
1.  G forms a group under matrix 

multiplication. 
2.   H is a normal subgroup of G. 
3.  The quotient group G/H is well-defined 

and is Abelian. 
4.  The quotient group G/H is well defined and 

is isomorphic to the group of 22  

diagonal matrices (over ℝ) with 
determinant 1. 

 

44. Let ℂ be the field of complex numbers and ℂ
*
 

be the group of non zero complex numbers 
under multiplication. Then which of the 
following are true? 

1. ℂ
*
 is cyclic. 

2. Every finite subgroup of ℂ
*
 is cyclic. 

3. ℂ
*
 has finitely many finite subgroups. 

4. Every proper subgroup ℂ
* 
is cyclic. 

 

45. Let R be a finite non-zero commutative ring 

with unity. Then which of the following 

statements are necessarily true? 

1. Any non-zero element of R is either a unit 

or a zero divisor. 

2.  There may exist a non-zero element of R 

which is neither a unit nor a zero divisor. 

3.     Every prime ideal of R is maximal. 

4.  If R has no zero divisors then order of 

any additive subgroup of R is a prime 

power. 

 

46. Which of the following statements are true?  

1.     ℤ is a principle ideal domain. 

2.  ℤ[x,y] / <y+1> is a unique factorization 

domain. 

3.  If R is a principle ideal domain and p is a 

non-zero prime ideal, then R/p has finitely 

many prime ideals. 

4.  If R is a principle ideal domain, then any 

subring of R containing 1 is again a 

principal ideal domain. 

 

47. Let R be a commutative ring with unity and 
R[x] be the polynomial ring in one variable. For 

a non zero ,
0 


N

n

n

nxaf  define )( f  to 

be the smallest n such that .0na   Also 

)0( . Then which of the following 

statements is/are true? 

1.   )).(),((min)( gfgf    

2. ).()()( gffg    

3. )),(),(min()( gfgf    
     if ).()(( gf    
4. ),()()( gffg    if R is an   integral 

domain. 
 
48. Let F2 be the finite field of order 2. Then which 

of the following statements are true? 

1. F2[x] has only finitely many irreducible 

elements. 

2. F2 [x] has exactly one irreducible 

polynomial of degree 2.  

3.  F2[x] / <x
2
 + 1> is a finite dimensional 

vector space over F2. 

4.  Any irreducible polynomial in F2[x] of 

degree 5 has distinct roots in any 

algebraic closure of F2. 
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JUNE-2017 
 

PART - B 
 

49. Consider the ideal ),1( 2 yxI 
 

in the 

polynomial ring ℂ ].,[ yx  Which of the 

following statements is true? 

1.  I is a maximal ideal  

2.  I is a prime ideal but not a maximal ideal  

3.  I is a maximal ideal but not a prime ideal  

4.  I  is neither a prime ideal nor a maximal  
ideal  

 
PART - C 

 
50. For an integer n ≥2,  let Sn be the permutation 

group on n letters and An the alternating group. 

Let ℂ
*
 be the group of non–zero complex 

numbers under multiplication. Which of the 
following are correct statements?  
1.  For every integer n ≥ 2, there is a non 

trivial homomorphism nS: ℂ
*
. 

2.  For every integer n ≥ 2, there is a unique 

nontrivial homomorphism nS: ℂ
*
 

3.  For every integer n ≥ 3, there is a 

nontrivial homomorphism nA: ℂ
*
 

4. For every integer n ≥ 5, there is a 

nontrivial homomorphism nA: ℂ
*
 

 

51. Let R={f:{1,2,...,10}→ℤ2} be the set of all  ℤ2 – 
valued functions on the set {1,2,...,10} of the 
first ten positive integers. Then R is 
commutative ring with pointwise addition and 
pointwise multiplication of functions. Which of 
the following statements are correct? 
1. R has a unique maximal ideal 
2. every prime ideal of R is also maximal 
3. Number of proper ideals of R is 511 
4. every element of R is idempotent 

 
52. Which of the following rings are principal ideal 

domains (PID)? 

1. Q [x]   2. ℤ[x] 

3. (ℤ/6ℤ)[x]  4. (ℤ/7ℤ)[x] 
 
53. Let G be a group of order 125. Which of the 

following statements are necessarily true? 
1. G has a non-trivial abelian subgroup 
2. The centre of G is a proper subgroup 
3. The centre of G has order 5 
4. There is a subgroup of order 25 

 

54. Let R be a non-zero ring with identity such that 

a
2
=a for all a∈R. Which of the following 

statements are true? 
1. There is no such ring 

2. 2a=0 for all a∈R 

3. 3a=0 for all a∈R 

4. ℤ/2ℤ is a subring of R 
 
55. Which of the following polynomials are 

irreducible in ℤ[x]? 

1. 5104  xx  2. 123  xx  

3. 124  xx   4. 13  xx  
 

DECEMBER - 2017 
 

PART - B 
 

56. Let f : ℤ  (ℤ/4ℤ)  (ℤ/6ℤ) be the function     
f(n) = (n mod 4, n mod 6). Then  
1.  (0 mod 4, 3 mod 6) is in the image of f  
2.  (a mod 4, b mod 6) is in the image of f, for 

all even integers a and b 
3.  image of f has exactly 6 elements 

4. kernel of f = 24ℤ 
 

57. The group S3 of permutations of {1, 2, 3} acts 
on the three dimensional vector space over 
the finite field F3 of three elements, by 

permuting the vectors in basis {e1,e2,e3} by   . 

ei = e(i), for all   S3. The cardinality of the 
set of vectors fixed under the above action is  
1. 0 2. 3         3. 9     4. 27 

 

58. Let R be a subring of ℚ containing 1. Then 
which of the following is necessarily true? 
1.  R is a principal ideal domain (PID) 
2.  R contains infinitely many prime ideals  
3.  R contains a prime ideal which is not a 

maximal ideal  
4.  for every maximal ideal m in R, the 

residue field R/m is finite  
 

PART - C 
 

59. Let G be a finite abelian group and a,b∈G with 
order(a) = m, order(b) =n. Which of the 
following are necessarily true ? 

 1.     order (ab) = mn 
 2.     order (ab) = lcm(m,n) 

3.  there is an element of G whose order is 
lcm (m,n) 

 4.     order (ab)=gcd(m,n) 
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60. Which of the following rings are principal ideal 
domains (PIDs) ? 

 1. ℤ[X]/<X
2
 + 1> 

 2. ℤ[X] 

 3. ℂ[X,Y] 

 4. ℝ[X,Y]/<X
2
 + 1,Y> 

 
61. For any prime number p, let Ap be the set of 

integers d∈{1,2,...,999} such that the power of 
p in the prime factorisation of d is odd. Then 
the cardinality of 
1. A3 is 250  2. A5 is 160 
3. A7 is 124  4. A11 is 82 

 

62. Let 7

2 i

ez



  and let .42 zzz   Then 

1.  ℚ   

2.  ℚ  D  for some D>0 

3.  ℚ  D  for some D<0 

4.  i ℝ 

 
63. Let F be a finite field and let K/F be a field 

extension of degree 6. Then the Galois group 
of K/F is isomorphic to 
1.  the cyclic group of order 6 
2.  the permutation group on {1,2,3} 
3.  the permutation group on {1,2,3,4,5,6} 
4.  the permutation group on {1} 

 
JUNE - 2018 

PART – B 
 

64. Let S7 denote the group of permutations of 
the set {1,2,3,4,5,6,7}. Which of the 
following is true? 

 1. There are no elements of order 6 in S7 
2. There are no elements of order 7 in S7 

 3. There are no elements of order 8 in S7 
4. There are no elements of order 10 in S7 

 

65. The number of group homomorphisms 

from ℤ10  to ℤ20 is 
 1. zero   2. one   

3. five   4. Ten 
 

PART – C 
 

66.  Let G = S3 be the permutation group of 3 
symbols. Then  
1.  G is isomorphic to a subgroup of a 
cyclic group  
2.  there exists a cyclic group H such that 
G maps homomorphically onto H  

3.  G is a product of cyclic groups  
4. there exists a nontrivial group 

homomorphism from G to the additive 

group (ℚ, +) of rational numbers 
 
67.  Let S be the set of polynomials f(x) with 

integer coefficients satisfying  

f(x)  1 mod (x – 1) ; f(x)  0 mod (x – 3). 
Which of the following statements are 
true? 
1. S is empty    
2. S is a singleton  
3. S is a finite non-empty set   
4. S is countably infinite  
 

68.  Which of the following statements are true? 
1. The multiplicative group of a finite field is 
always cyclic  
2. The additive group of a finite field is always 
cyclic  
3. There exists a finite field of any given order 
4. There exists at most one finite field (upto 
isomorphism) of any given order  

 

69.  Which of the following statements are true? 
1. A subring of an integral domain is an 
integral domain 
2. A subring of a unique factorization domain 
(U.F.D.) is a U.F.D. 
3. A subring of a principal ideal domain 
(P.I.D.) is a P.I.D. 
4. A subring of an Euclidean domain is an 
Euclidean domain 

 

70.  Let G be a group with |G| = 96. Suppose H 
and K are subgroups of G with |H| = 12 and 
|K| = 16. Then  
1. H ∩ K = {e}     

2. H ∩ K  {e}           
3. H ∩ K is Abelian    
4. H ∩ K is not Abelian  

 

December – 2018 
 

PART - B 
 
71. The  number of group homomorphisms from  

the alternating group A5 to the symmetric 
group S4 is: 
1. 1  2. 12  3. 20  4. 6 
 

72. Let p≥23 be a prime number such that the 

decimal expansion (base 10) of 
p

1
 is periodic 

with period p-1 (that is, )....0
1

121  paaa
p
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with }9,...,1,0{ia  for all i and for any m,1 ≤ 

m<p-1, )....0
1

21 maaa
p
 . Let (ℤ/pℤ)* denote 

the multiplicative group of integers modulo p. 
Then which of the following is correct ? 

1. The order of 10∈ (ℤ/pℤ)* is a proper 
divisor of (p-1) 

2. The order of 10 ∈(ℤ/pℤ)* is 
2

)1( p
 

3. The element 10∈(ℤ/pℤ)* is a generator of 

the group (ℤ/pℤ)* 

4. The group (ℤ/pℤ)* is cyclic but not 
generated by the element 10. 
 

73. Given integers a and b, let Na,b denote the 
number of positive integers k < 100 such that 
k≡a (mod 9) and k ≡b (mod 11). Then which 
of the following statements is correct? 
1. Na,b = 1 for all integers a and b 
2. There exist integers a and b satisfying  
 Na,b > 1. 
3. There exist integers a and b satisfying  
 Na,b = 0 
4. There exists integers a and b satisfying 

Na,b = 0 and there exists intgers c and d 
satisfying Nc,d > 1 

 

PART - C 
 

74.  For any group G, let Aut(G) denote the 
group of automorphisms of G. Which of 
the following are true? 
1.    If G is finite, then Aut(G) is finite  
2.    If G is cyclic, then Aut(G) is cyclic  
3.    If G is infinite, then Aut(G) is infinite  
4.  If Aut (G) is isomorphic to Aut (H), 

where G and H are two groups, then 
G is isomorphic to H 

 
75.  Let G be a group with the following 

property: Given any positive integers m, n 
and r there exist elements g and h in G 
such that order(g) = m, order(h) = n and 
order(gh) = r. Then which of the following 
are necessarily true? 
1. G has to be an infinite group  

    2. G cannot be a cyclic group  
3. G has infinitely many cyclic subgroups 

    4. G has to be a non-abelian group  
 

76.  Let R be the ring ℂ[x]/(x
2
 + 1). Pick the 

correct statements from below: 

1. dimℂ R = 3      

2. R has exactly two prime ideals  
3. R is a UFD  
4. (x) is a maximal ideal of R 
 

77.  Let f(x) = x
7
 – 105x + 12. Then which of 

the following are correct? 

1.    f(x) is reducible over ℚ 
2.  There exists an integer m such that 

f(m) = 105 
3.   There exists an integer m such that  

f(m) = 2  
4.  f(m) is not a prime number for any 

integer m 
 

78.  Let 5 2  ℝ and .
5

2
exp 










i
  Let 

K = ℚ(). Pick the correct statements 
from below: 

1.  There exists a field automorphism  of 

ℂ such that (K) = K and   id 

2.  There exists a field automorphism  of 

ℂ such that (K)  K  

3.  There exists a finite extension E of ℚ 

such that K  E and (K)  E for 

every field automorphism  of E  

4.  For all field automorphisms  of K, 

() =  
 

JUNE - 2019 

PART - B 
 

79.  For any integer n  1, let  
 d(n) = number of positive divisors of n 
 v(n) = number of distinct prime divisors of n  
 w(n) = number of prime divisors of n 

counted with multiplicity  
 [for example: If p is prime, then  
 d(p) = 2, v(p) = v(p

2
) = 1, w(p

2
) = 2] 

1.  If n  1000 and w (n)  2, then          
d(n) > log n  

2.  there exists n such that nnd 3)(   

3.  for every n, 2
v(n)

  d(n)  2
w(n) 

 
4.  if w(n) = w(m), then d(n) = d(m) 

 
80.  Consider the set of matrices  
 

 G =   







b

bs
:

10
ℤ, s  {-1, + 1} 

 
 Then which of the following is true? 

1. G forms a group under addition  
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2.  G forms an abelian group under 
multiplication  

3.  Every element in G is diagonalizable 

over ℂ 
4.  G is finitely generated group under 

multiplication  
 

81.  Let R be a commutative ring with unity. 
Which of the following is true? 
1.  If R has finitely many prime ideals, then 

R is a field. 
2.  If R has finitely many ideals, then R is 

finite  
3.  If R is a P.I.D., then every subring of R 

with unity is a P.I.D. 
4.  If R is an integral domain which has 

finitely many ideals, then R is a field. 
 

PART – C 
 

82.  Let a  ℤ be such that a = b
2 

+ c
2
, where b, 

c  ℤ\{0}. Then a cannot be written as  

1.  pd
2
, where d  ℤ and p is a prime with   

p  1 (mod 4) 

2.  pd
2
, where d  ℤ and p is a prime with   

p  3 (mod 4) 

3.  pqd
2
, where d  ℤ and p, q are primes 

with p  1 (mod 4), q  3 (mod 4) 

4.  pqd
2
, where d  ℤ and p, q are distinct 

primes with p, q  3 (mod 4) 
 
83.  For any prime p, consider the group  

 G = GL2 (ℤ/pℤ).  
 Then which of the following are true? 

1.  G has an element of order p  
2.  G has exactly one element of order p  
3.  G has no p-Sylow subgroups  
4.  Every element of order p is conjugate 

to a matrix ,
10

1







 a
where a  (ℤ/pℤ)* 

 

84.  Let ℤ[X] be the ring of polynomials over 

integers. Then the additive group ℤ[X] is 
1.  isomorphic to the multiplicative group 

ℚ
+
 of positive rational numbers  

2.  isomorphic to the group of rational 

numbers ℚ under addition  
3.  countable  
4.  uncountable  

 
85.  Let X = (0, 1) be the open unit interval and 

C (X, ℝ) be the ring of continuous functions 

from X to ℝ. For any x  (0, 1), let I(x) =        

{f  C (X, ℝ) | f(x) = 0}. Then which of the 
following are true? 
1.  I(x) is a prime ideal  
2.  I(x) is a maximal ideal  

3.  Every maximal ideal of C (X, ℝ) is equal 

to I(x) for some x  X  

4.  C (X, ℝ) is an integral domain  
 

86.  Let n  ℤ. Then which of the following are 
correct? 

1.  X
3
 + nX + 1 is irreducible over ℤ for 

every n 

2.  X
3
 + nX + 1 is reducible over ℤ if n   

{0, -2} 

3.  X
3
 + nX + 1 is irreducible over ℤ if n  

{0, -2} 

4.  X
3
 + nX + 1 is reducible over ℤ for 

infinitely many n 
 
87.  Let F27 denote the finite field of size 27. For 

each   F27, we define  

 A = {1, 1 + , 1 +  + 
2
, 1 +  + 

2
 + 

3
, 

…}. 
 Then which of the following are true? 

1.  the number of   F27 such that |A| = 
26 equals 12 

2.  0  A if and only if   0 
3.  |A1| = 27 

4.  
27F

A is a singleton set  

 
DECEMBER 2019 

PART – B 

 
88.  Let G be a group of order p

n
, p a prime 

number and n > 1. Then which of the 
following is true? 
(1)  Centre of G has at least two elements  
(2)  G is always an Abelian group  
(3) G has exactly two normal subgroups 
(i.e., G is a simple group) 
(4)  If H is any other group of order p

n
, 

then G is isomorphic to H 
 

89.  Let S5 be the symmetric group on five 
symbols. Then which of the following 
statements is false? 
(1)  S5 contains a cyclic subgroup of order 
6 
(2)  S5 contains a non-Abelian subgroup of 
order 8 
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(3) S5 does not contain a subgroup 

isomorphic to ℤ/2ℤ  ℤ/2ℤ 
(4) S5 does not contain a subgroup of 
order 7 
 

90.  A permutation  of [n] = {1, 2, …, n} is 

called irreducible, if the restriction |[k] is 

not a permutation of [k] for any 1  k < n. 
Let an be the number of irreducible 
permutations of [n]. Then a1 = 1, a2 = 1 
and a3 = 3. The value of a4 is  
(1) 12   (2) 13   
(3) 14   (4) 15 

 
PART – C 

 

91.  Let I be an ideal of ℤ. Then which of the 
following statements are true? 
(1)  I is a principal ideal 

(2)  I is a prime ideal of ℤ 

(3) If I is a prime ideal of ℤ, then I is a 

maximal ideal in ℤ 

(4) If I is a maximal ideal in ℤ, then I is a 

prime ideal of ℤ 
 

92.  Let f(x)  ℤ[x] be a monic polynomial of 
degree n. Then which of the following are 
true? 

(1) If f(x) is irreducible in ℤ[x], then it is 

irreducible in ℚ[x] 

(2) If f(x) is irreducible in ℚ[x], then it is 

irreducible in ℤ[x] 

(3)  If f(x) is reducible in ℤ[x], then it has a 
real root  
(4) If f(x) has a real root, then it is 

reducible in ℤ[x] 
 
93.  Let F[X] be the polynomial ring in one 

variable over a field F. Then which of the 
following statements are true? 
(1)  F[X] is a UFD 
(2)  F[X] is a PID 
(3)  F[X] is a Euclidean domain 
(4) F[X] is a PID but is not an Euclidean 
domain 
 

94.  Let C[0, 1] be the ring of all real valued 
continuous function on [0, 1] 
Let 

.0
4

3

4

1
:]1,0[


























 ffCfA The

n which of the following statements are 
true? 
(1) A is an ideal in C[0, 1] but is not a 
prime ideal in C[0, 1] 
(2)  A is a prime ideal in C[0, 1] 
(3)  A is a maximal ideal in C[0, 1] 
(4)  A is a prime ideal in C[0, 1], but is not 
a maximal ideal in C[0, 1] 

 
95.  For a given integer k, which of the follow 

statements are false? 

(1) If k (mod 72) is a unit in ℤ72, then k 

(mod 9) is a unit in ℤ9 

(2) If k (mod 72) is a unit in ℤ72, then k 

(mod 8) is a unit in ℤ8 

(3)  If k (mod 8) is a unit in ℤ8, then k (mod 

72) is a unit in ℤ72 

(4)  If k (mod 9) is a unit in ℤ9, then k (mod 

72) is a unit in ℤ72 

 
96.  Let F be a field. Then which of the 

following statements are true? 
(1) All extensions of degree 2 of F are 
isomorphic as fields 
(2) All finite extensions of F of same 
degree are isomorphic as fields if Char(F) 
> 0 
(3) All finite extensions of F of same 
degree are isomorphic as fields if F is finite  
(4) All finite normal extensions of F are 
isomorphic as fields if Char(F) = 0 

 

JUNE 2020 

PART – B 

 
97.  Which of the following statements is true? 

(1)  Every even integer n  16 divides      
(n – 1)! + 3 

(2)  Every odd integer n  16 divides        
(n – 1)! 

(3)  Every even integer n  16 divides       
(n – 1)! 

(4)  For every integer n  16, n
2
 divides     

n! + 1  
 
98.  Let X be a non-empty set and P(X) be the 

set of all subsets of X. On P(X), defined 

two operations  and  as follows: for A,    

B  P(X), A  B = A ∩ B; AB = (A ∪ B) \ 
(A ∩ B). 

 Which of the following statements is true? 

(1)  P(X) is a group under  as well as 

under  
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(2)  P(X) is a group under , but not under 

 

(3)  P(X) is a group under , but not under 

 

(4)  P(X) is neither a group under  not 

under  
 

99.  Let (n) be the cardinality of the set {a | 1 

 a  n, (a, n) = 1} where (a, n) denotes 
the gcd of a and n. Which of the following 
is NOT true? 
(1)  There exist infinitely many n such that 

(n) > (n + 1). 
(2)  There exist infinitely many n such that 

(n) < (n + 1) 

(3)  There exists N  ℕ such that N > 2 

and for all n > N, (N) < (n)  

(4)  The set  n
n

n
:

)(
ℕ   has finitely 

many limit points  
 

PART – C 
 
 
100.  Which of the following statements are 

true? 

 (1) ℚ has countably many subgroups  

 (2) ℚ has uncountably many subsets  

 (3) Every finitely generated subgroup of ℚ 
is cyclic  

 (4) ℚ is isomorphic to ℚ  ℚ as groups 
 

101.  Let SL2(ℤ) =  








dc

ba
 M2(ℤ): ad – bc = 1  

and for any prime p, let  
 

 (p) =    








dc

ba
 SL2(ℤ)  

                           
)(mod0),(mod0

)(mod1),(mod1

pbpc

pdpa




 

 
 Which of the following are true? 

 (1) (p) is a subgroup of SL2(ℤ)  

 (2) (p) is not a normal subgroup of SL2(ℤ) 

 (3) (p) has atleast two elements   

 (4) (p) is uncountable  
 
102.  Let G be a finite group. Which of the 

following are true? 

(1)  If g  G has order m and if n  1 
divides m, then G has a subgroup of 
order n. 

(2)  If for any two subgroups A and B of G, 

either A  B or B  A , then G is 
cyclic. 

(3)  If G is cyclic, then for any two 

subgroups A and B of G, either A  B 

or B  A 
(4)  If for every positive integer m dividing 

|G|, G has a subgroup of order m, then 
G is abelian 

 
103.  Let R, S be commutative rings with unity,    

f : R  S be a surjective ring 
homomorphism,  

 Q    S be a non-zero prime ideal. Which 
of the following statements are true? 
(1)  f 

-1
(Q) is a non-zero prime ideal in R 

(2)  f 
-1

(Q) is a maximal ideal in R if R is a 
PID 

(3)  f 
-1

(Q) is a maximal ideal in R if R is a 
finite commutative ring with unity 

(4)  f 
-1

(Q) is a maximal ideal in R if x
5
 = x 

for all x  R 
 
104.  Consider the polynomial f(x) = x

2 
+ 3x – 1. 

Which of the following statements are 
true? 

 (1) f is irreducible over ℤ ]13[
  

 
(2) f is irreducible over ℚ 

 (3) f is reducible over ℚ ]13[
   

 
(4) ℤ ]13[ is a unique factorization 

domain 
 

105.  Let p be an odd prime such that p  2 

(mod 3). Let  𝔽p be the field with p 

elements. Consider the subset E of 𝔽p  𝔽p 

given by E = {(x, y)  𝔽p  𝔽p : y
2
 = x

3
 + 1}. 

 Which of the follownig are true? 
 (1) E has alteast two elements   
 (2) E has atmost 2p elements  
 (3) E can have p

2
 elements    

 (4) E has alteast 2p elements  
 

JUNE 2021 

PART – B 

106.  Let S = {n : 1  n  999; 3|n or 37|n}. How 
many integers are there in the set S

c
 = {n : 

1  n  999 ; n  S}? 
 (1) 639   (2) 648 
 (3) 666   (4) 990 
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107.  How many generators does a cyclic group 
of order 36 have? 

 (1) 6    (2) 12 
 (3) 18   (4) 24 
 
108.  Which of the following statements is 

necessarily true for a commutative ring R 
with unity? 
(1)  R may have no maximal ideals 
(2)  R can have exactly two maximal 

ideals  
(3)  R can have one or more maximal 

ideals but no prime ideals  
(4)  R has at least two prime ideals  
 

PART – C 
 

109.  A positive integer n co-prime to 17, is 
called a primitive root modulo 17 if n

k
-1 is 

not divisible by 17 for all k with 1  k < 16. 
Let a, b be distinct positive integers 
between 1 and 16. Which of the following 
statements are true? 
(1)  2 is a primitive root modulo 17 
(2)  If a is a primitive root modulo 17, then 

a
2
 is not necessarily a primitive Root 

modulo 17 
(3)  If a, b are primitive roots modulo 17, 

then ab is a primitive root modulo 17 
(4)  Product of primitive roots modulo 17 

between 1 and 16 is congruent to 1 
modulo 17 

 

110.  For a positive integer n, let (n) denote 
the number of prime factors of n, counted 

with multiplicity. For instance, (3) = 1, 

(6) = (9) = 2. Let p > 3 be a prime 
number and let N = p(p + 2) (p + 4). Which 
of the following statements are true? 

(1)  (N)  3  
(2)  There exist primes p > 3 such that 

(N) = 3  
(3)  p can never be the smallest prime 

divisor of N  
(4)  p can be the smallest prime divisor of 

N 
 
111.  Let G be a group of order 24. Which of the 

following statements are necessarily true? 
(1)  G has a normal subgroup of order 3 
(2)  G is not a simple group  
(3)  There exists an injective group 

homomorphism from G to S8 
(4)  G has a subgroup of index 4 

 
112.  Which of the following statements are 

true? 

(1)  All finite field extensions of ℚ are 
Galois  

(2)  There exists a Galois extension of ℚ 
of degree 3 

(3)  All finite field extensions of 𝔽2 are 
Galois 

(4)  There exists a field extension of ℚ of 
degree 2 which is not Galois 

 
113.  Let f = a0 + a1X + … anX

n
 be a polynomial 

with ai  ℤ for 0  i  n. Let p be a prime 

such that p|ai for all 1 < i  n and p
2
 does 

not divide an. Which of the following 
statements are true? 
(1)  f is always irreducible  
(2)  f is always reducible  
(3)  f can sometimes be irreducible and 

can sometimes be reducible  
(4)  f can have degree 1 

 
JUNE 2022 

 
PART – B 

 
114.  Let R be a ring and N be the set of 

nilpotent elements i.e. N = {x  R | x
n
 = 0 

for some n  ℕ}. Which of the following is 
true? 
(1)  N is an ideal in R    
(2)  N is never an ideal in R 
(3)  If R is non-commutative, N is not an 

ideal 
(4)  If R is commutative, N is an ideal   

 
115. Let R be a commutative ring with identity. 

Let S be a multiplicatively closed set such 

that 0  S. Let I be an ideal which is 
maximal with respect to the condition that 

S ∩ I = . 
 Which of the following is necessarily true? 
 (1) I is a maximal ideal   
 (2) I is a prime ideal 
 (3) I = (1)       
 (4) I = (0)  
 
116.  Let G be a simple group of order 168. How 

many elements of order 7 does it have  
 (1) 6    (2) 7   
 (3) 48   (4) 56 

 
PART – C 

 
117.  Let a, b be positive integers with a > b and 

a + b = 24. Suppose that the following 
congruences have a common integer 

solution: 2x  3a (mod 5), x  4b (mod 5). 
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Which of the following statements are 
true? 

 (1) 10  a – b  20  
 (2) 3b > a > 2b  
 (3) a > 3b    
 (4) a – b is divisible by 5 
 
118.  Consider the function f(n) = n

5
 – 2n

3
 + n, 

where n is a positive integer. Which of the 
following statements are true? 
(1)  For every positive integer k, there 

exists a positive integer n such that 
f(n) is divisible by 2

k
. 

(2)  f(n) is even for every integer n  20.  

(3)  For every integer  20, either f(n) is 
odd or f(n) divisible by 4. 

(4)  For every odd integer  21, f(n) is 
divisible by 64. 

 

119.  Let A = ℤ[X]/(X
2
 + X + 1, X

3
 + 2X

2 
+ 2X + 

6). 
 Which of the following statements are 

true? 
 (1) A is an integral domain   
 (2) A is a finite ring  
 (3) A is a field      
 (4) A is a product of two rings 
 
120.  Which of the following statements are 

necessarily true regarding a group G of 
order 2022? 
(1)  Let g be an element of odd order in G 

and sg the permutation of G given by 

sg(x) = g(x), x  G. Then sg is even 
permutation 

(2)  The set H = {g  G | order (g) is odd} 
is a normal subgroup of G 

(3)  G has a normal subgroup of index 337 
(4)  G has only 2 normal subgroups 

 

121.  Let p be a prime number and let  

denote an algebraic closure of the field 𝔽p. 
We define 

  
 Which of the following statements are 

true? 
(1)  S is an uncountable set  
(2)  S is a countable set  
(3)  For every positive integer n > 1, there 

exists a unique field F  S such that  
[F : 𝔽p] = n 

(4)  Given any two fields F1, F2  S, either 

F1  F2 or F2  F1 
 
122.  Which of the following are class equations 

for a finite group? 

 (1) 1 + 3 + 3 + 3 + 3 + 13 + 13 = 39  
 (2) 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2 = 14 
 (3) 1 + 3 + 3 + 7 + 7 = 21   
 (4) 1 + 1 + 1 + 2 + 5 + 5 = 15 
 

123.  Consider 
2

51
 and .

2

51
  

Define a sequence of numbers Fn as 
follows: 

 









nn

nF for n = 1, 2, … 

 Let p : ℝ  ℝ be a polynomial of degree 
at most 2 such that  

 p(1) = F1, p(3) = F3, p(5) = F5. 
 Which of the following statements are 

true? 

 (1) Fn = Fn-1 + Fn-2   for n  3   
 (2) p(7) = 13 

 (3) Fn = Fn-1 + 2Fn-2   for n  5   
 (4) p(7) = 10 
 

JUNE 2023 
 

PART – B 
 

124.  Let p be a prime number. Let G be a group 

such that for each g  G there exists an   

n  ℕ such that .1
npg  Which of the 

following statements if false? 
(1)  If |G| = p

6
, then G has a subgroup of 

index p
2
. 

(2)  If |G| = p
6
, then G has atleast five 

normal subgroups. 
(3)  Center of G can be infinite. 
(4)  There exists G with |G| = p

6
 such that 

G has exactly six normal subgroups. 
 
125.  The number of solutions of the equation  

x
2
 = 1 in the ring ℤ/105ℤ is  

 (1) 0    (2) 2   
 (3) 4    (4) 8  
 
126.  Which of the following equations can occur 

as the class equation of a group of order 
10? 

 (1) 10 = 1 + 1 + … + 1 (10-times)  
 (2) 10 = 1 + 1 + 2 + 2 + 2 + 2 
 (3) 10 = 1 + 1 + 1 + 2 + 5   
 (4) 10 = 1 + 2 + 3 + 4  

 
PART – C 

 
127.  Which of the following statements are 

correct? 
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(1)  If G is a group of order 244, then G 
contains a unique subgroup of order 
27. 

(2)  If G is a group of order 1694, then G 
contains a unique subgroup of order 
121. 

(3)  There exists a group of order 154 
which contains a unique subgrouop of 
order 7. 

(4)  There exists a group of order 121 
which contains two subgroups of order 
11. 

 
128.  Which of the followng are maximal ideals 

of ℤ[X]? 
(1)  Ideal generated by 2 and (1 + X

2
)  

(2)  Ideal generated by 2 and (1 + X + X
2
) 

(3)  Ideal generated by 3 and (1 + X
2
)  

(4)  Ideal generated by 3 and (1 + X + X
2
) 

 
129.  Let E be a finite algebraic Galois extension 

of F with Galois group G. Which of the 
following statements are true? 
(1)  There is an intermediate field K with   

K  F and K  E such that K is a 
Galois extension of F. 

(2)  If every proper intermediate field K is a 
Galois extension of F then G is 
Abelian. 

(3)  If E has exactly three intermediate 
fields including F and E then G is 
Abelian. 

(4)  If [E : F] = 99 then every intermediate 
field is a Galois extension of F. 

 

130.  Let n  1 be a positive integer and Sn the 

symmetric group on n symbols. Let  = 

{(g, g): g  Sn}. Which of the following 

statements are necessarily true? 

(1)  The map f: Sn  Sn  Sn given by    

f(a, b) = ab is a group homomorphism. 

(2)  is a subgroup of Sn  Sn. 

(3)   is a normal subgroup of Sn  Sn. 

(4)   is a normal subgoup of Sn  Sn, if n 

is a prime number. 

 

131.  Let G1 and G2 be two groups and : G1  

G2 be a surjective group homomorphism. 

Which of the following statements are 

true? 

(1)  If G1 is cyclic then G2 is cyclic  

(2)  If G1 is Abelian then G2 is Abelian 

(3)  If H is a subgroup of G1 then (H) is a 

subgroup of G2 

(4)  If N is a normal subgroup of G1 then 

(N)  is a normal subgroup of G2. 

 
132.  Let G be a grop of order 2023. Which of 

the following statements are true? 

 (1) G is an Abelian group.   

 (2) G is cyclic group. 

 (3) G is a simple group.    

 (4) G is not a simple group. 

 

DECEMBER 2023 
 

PART – B 
 

133.  Consider the field ℂ together with the 
Euclidean topology. Let K be a proper 

subfield of ℂ that is not contained in ℝ. 
Which one of the following statements is 
necessarily true? 

(1)  K is dense in ℂ. 

(2)  K is an algebraic extension of ℚ. 

(3)  ℂ is an algebraic extension of K. 

(4)  The smallest closed subset of ℂ 
containing K is NOT a field. 

 
134.  Let G be any finite group. Which one of 

the following is necessarily true? 
(1)  G is a union of proper subgroups. 
(2)  G is a union of proper subgroups if |G| 

has atleast two distinct prime divisors. 
(3)  If G is abelian, then G is a union of 

proper subgroups. 
(4)  G is a union of proper subgroups if 

and only if G is not cyclic. 
 
135.  Which one of the following is equal to 1

37
 + 

2
37

 + … + 88
37

 in ℤ/89ℤ? 
 (1) 88   (2) -88  
 (3) -2   (4) 0 

 
PART – C 

 
136.  Which of the following statements are 

true? 
(1)  Let G1 and G2 be finite groups such 

that their orders |G1| and |G2| are 
coprime. Then any homomorphism 
from G1 to G2 is trivial. 

(2)  Let G be a finite group. Let f : G  G 
be a group homomorphism such that f 
fixes more than half of the elements of 

G. Then f(x) = x for all x  G. 
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(3)  Let G be a finite group having exactly 
3 subgroups. Then G is of order p

2
 for 

some prime p. 
(4)  Any finite abelian group G has alteast 

d(|G|) subgroups in G, where d(m) 
denotes the number of positive 
divisors of m. 

 

137.  Let n  ℤ be such that n is congruent to 1 
mod 7 and n is congruent to 4 mod 15. 
Which of the following statements are 
true? 

 (1) n is congruent to 1 mod 3.   
 (2) n is congruent to 1 mod 35. 
 (3) n is congruent to 1 mod 21.   
 (4) n is congruent to 1 mod 5. 
 
138.  Let G be the group (under matrix 

multiplication) of 2  2 invertible matrices 

with entries from ℤ/9ℤ. Let a be the order 
of G.  Which of the following statements 
are true? 

 (1) a is divisible by 3
4
.    

 (2) a is divisible by 2
4
. 

 (3) a is not divisible by 48.   
 (4) a is divisible by 3

6
. 

 

139.  Let R = ℤ[X]/(X
2
 + 1) and  : ℤ[X]  R be 

the natural quotient map. Which of the 
following statements are true? 

(1)  R is isomorphic to a subring of ℂ 

(2)  For any prime number p  ℤ, the ideal 

generated by (p) is a proper ideal of 
R. 

(3)  R has infinitely many prime ideals. 

(4)  The ideal generated by (X) is a prime 
ideal in R. 

 
140.  Let f(X) = X

2
 + X + 1 and g(X) = X

2
 + X – 2 

be polynomials in ℤ[X]. Which of the 
following statements are true? 
(1)  For all prime numbers p, f(X) mod p is 

irreducible in  

(2)  There exists a prime number p such 
that g(X) mod p is irreducible in 

 

(3)  g(X) is irreducible in ℚ[X] 

(4)  f(X) is irreducible in ℚ[X] 
 

141.  Let f(X) = X
3
 – 2  ℚ[X] and let K  ℂ be 

the splitting field of f(X) over ℚ. Let  = 

e
2i/3

. Which of the following statements 
are true? 

(1)  The Galois group of K over ℚ is the 
symmetric group S3. 

(2)  The Galois group of K over ℚ() is the 
symmetric group S3. 

(3)  The Galois group of K over ℚ is ℤ/3ℤ. 

(4)  The Galois group of K over ℚ() is 

ℤ/3ℤ. 
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