

MOHAN INSTITUTE OF MATHEMA

Dedicated To Disseminating Mathematical Knowledge

INTEGRAL EQUATION ASSIGNMENT

JUNE - 2014

PART - B

- **1.** The homogeneous integral equation $\varphi(x) - \lambda \int_{0}^{1} (3x-2)t \, \varphi(t) dt = 0$, has
 - One characteristic number
 - 2. Three characteristic numbers
 - 3. Two characteristic numbers
 - 4. No characteristic number

PART - C

2. Let λ_1, λ_2 be the characteristic numbers and f₁,f₂ the corresponding eigen functions for the homogeneous integral equation

$$\varphi(x) - \lambda \int_0^1 (xt + 2x^2)\varphi(t)dt = 0$$
. Then

1.
$$\lambda_1 = -18 - 6\sqrt{10}, \lambda_2 = -18 + 6\sqrt{10}$$

2.
$$\lambda_1 = -36 - 12\sqrt{10}, \lambda_2 = -36 + 12\sqrt{10}$$

3.
$$\int_0^1 f_1(x) f_2(x) dx = 1$$

4.
$$\int_{0}^{1} f_{1}(x) f_{2}(x) dx = 0$$

 $y:[0,\infty)\to[0,\infty)$ is a continuously differentiable function satisfying

$$y(t) = y(0) - \int_{0}^{t} y(s)ds$$
 for $t \ge 0$, then

1.
$$y^2(t) = y^2(0) + \left(\int_0^t y(s)ds\right)^2 - 2y(0)\int_0^t y(s)ds$$

2.
$$y^2(t) = y^2(0) + 2\int_0^t y^2(s)ds$$

3.
$$y^2(t) = y^2(0) - \int_0^t y(s)ds$$

4.
$$y^2(t) = y^2(0) - 2 \int_0^t y^2(s) ds$$

DEC - 2014

4. Let $y:[0,\infty)\to\mathbb{R}$ be twice continuously differentiable and satisfy

$$y(x) + \int_0^x (x-s)y(s)ds = x^3/6$$
. Then

1.
$$y(x) = \frac{1}{6} \int_0^x s^3 \sin(x - s) ds$$

2.
$$y(x) = \frac{1}{6} \int_0^x s^3 \cos(x - s) ds$$

3.
$$y(x) = \int_0^x s \sin(x - s) ds$$

4.
$$y(x) = \int_0^x s \cos(x - s) ds$$

5. Let $u \in C^2([0,1])$ satisfy for some $\lambda \neq 0$ and

$$u(x) + \frac{\lambda}{2} \int_0^1 |x - s| u(s) ds = ax + b.$$

Then u also satisfies

$$1. \quad \frac{d^2u}{dx^2} + \lambda u = 0$$

$$2. \quad \frac{d^2u}{dx^2} - \lambda u = 0$$

3.
$$\frac{du}{dx} - \frac{\lambda}{2} \int_0^1 \frac{x-s}{|x-s|} u(s) ds = a$$

4.
$$\frac{du}{dx} + \frac{\lambda}{2} \int_0^1 \frac{x-s}{|x-s|} u(s) ds = a$$

JUNE-2015

6. The integral equation

$$y(x) = \lambda \int_{0}^{1} (3x - 2)ty(t)dt$$
, with λ as a

parameter, has

- 1. only one characteristic number
- 2. two characteristic numbers
- 3. more than two characteristic numbers
- 4. no characteristic number
- 7. For the integral equation

$$y(x) = 1 + x^3 + \int_0^x K(x,t)y(t)dt$$
 with kernel

 $K(x,t) = 2^{x-t}$, the iterated kernel $K_3(x,t)$ is

1.
$$2^{x-t}(x-t)^2$$
 2. $2^{x-t}(x-t)^3$ 3. $2^{x-t-1}(x-t)^2$ 4. $2^{x-t-1}(x-t)^3$

2.
$$2^{x-t}(x-t)^3$$

DEC-2015

- The resolvent kernel R (x, t, λ) for the Volterra integral equation $\varphi(x) = x + \lambda \int_{a}^{x} \varphi(s) ds$, is
 - 1. $e^{\lambda(x+t)}$
- 3. λe^(x+t)
- **9.** Let $y : [0, \infty) \rightarrow [0, \infty)$ be a continuously differentiable function satisfying

MOHAN INSTITUTE OF MATHEMATICS

Dedicated To Disseminating Mathematical Knowledge

$$y(t) = y(0) + \int_0^t y(s) ds$$
 for $t \ge 0$. Then

1.
$$y^2(t) = y^2(0) + \int_0^t y^2(s) ds$$
.

2.
$$y^2(t) = y^2(0) + 2\int_0^t y^2(s) ds$$
.

3.
$$y^2(t) = y^2(0) + \int_0^t y(s) ds$$
.

4.
$$y^2(t) = y^2(0) + \left(\int_0^t y(s) ds\right)^2 + 2y(0) \int_0^t y(s) ds$$
.

10. Let λ_1 , λ_2 be the characteristic numbers and f_1 , f_2 be the corresponding eigen functions for the homogenous integral equation

$$\varphi(x) - \lambda \int_{0}^{1} (2xt + 4x^{2}) \varphi(t) dt = 0.$$
 Then

1.
$$\lambda_1 \neq \lambda_2$$

$$2. \lambda_1 = \lambda_2$$

3.
$$\int_0^1 f_1(x) f_2(x) dx = 0$$

4.
$$\int_0^1 f_1(x) f_2(x) dx = 1$$

JUNE - 2016

PART – B

11. Consider the integral equation

$$y(x) = x^3 + \int_0^x Sin(x-t)y(t)dt, x \in [0, \pi].$$

Then the value of y(1) is

1. 19/20

.. 2. 1

3.17/20

4. 21/20

PART-C

12. The curve y = y(x), passing through the point $(\sqrt{3},1)$ and defined by the following property (Voltera integral equation of the first kind)

$$\int_0^y \frac{f(v)dv}{\sqrt{y-v}} = 4\sqrt{y}, \text{ where } f(y) = \sqrt{1 + \frac{1}{{y'}^2}}, \text{ is }$$

the part of a

1.Straight line.

2. Circle

3. Parabola.

4. Cycloid.

DEC-2016

13. Let ϕ satisfy $\phi(x) = f(x) + \int_0^x \sin(x-t)\phi(t) dt$.

Then ϕ is given by

1.
$$\phi(x) = f(x) + \int_0^x (x-t) f(t) dt$$

2.
$$\phi(x) = f(x) - \int_0^x (x-t) f(t) dt$$

3.
$$\phi(x) = f(x) - \int_0^x \cos(x-t) f(t) dt$$

4.
$$\phi(x) = f(x) - \int_0^x \sin(x-t) f(t) dt$$

14. Which of the following are the characteristic numbers and the corresponding eigenfunctions for the Fredholm homogeneous equation whose kernel is

$$K(x,t) = \begin{cases} (x+1)t, & 0 \le x \le t \\ (t+1)x, & t \le x \le 1 \end{cases}$$
?

1. 1. e^x

2. $-\pi^2$, $\pi \sin \pi x + \cos \pi x$

3. $-4\pi^2$, $\pi \sin \pi x + \pi \cos 2\pi x$

4. - π^2 , $\pi \cos \pi x + \sin \pi x$

15. The integral equation

$$\phi(x) - \frac{2}{\pi} \int_0^{\pi} \cos(x+t)\phi(t)dt = f(x)$$

has infinitely many solutions if

1. f(x) = cosx

2. $f(x) = \cos 3x$

3. $f(x) = \sin x$

4. $f(x) = \sin 3x$

JUNE - 2017

16. Let $\phi(x)$ be the solution of

$$\int_0^x e^{x-t} \phi(t) dt = x, \quad x > 0.$$

Then $\phi(1)$ equals

1. -1

2.0

3 1

4 2

17. Let y(x) be the solution of the integral

equation
$$y(x) = x - \int_{0}^{x} xt^2 y(t)dt, x > 0.$$

Then the value of the function y(x) at $x = \sqrt{2}$ is equal to

1. $\frac{1}{\sqrt{2e}}$

2. $\frac{e}{2}$

 $3. \ \frac{\sqrt{2}}{e^2}$

4. $\frac{\sqrt{2}}{e}$

18. The solutions for λ = -1 and λ = 3 of the integral equation

$$y(x) = 1 + \lambda \int_{0}^{1} K(x,t)y(t)dt$$
, where

MOHAN INSTITUTE OF MATHEMAT

Dedicated To Disseminating Mathematical Knowledge

$K(x,t) = \begin{cases} \cosh x \sinh t, & 0 \le x \le t \\ \cosh t \sinh t, & t \le x \le 1 \end{cases}$ respectively.

1.
$$-\frac{x^2}{2} + \frac{3}{2} - \tanh 1$$
 and
$$\frac{1}{4} \left(\frac{3\cos 2x}{\cos 2 - 2\sin 2 \tanh 1} + 1 \right)$$

2.
$$-\frac{x^2}{2} + \frac{3}{2} - \tanh 1$$
 and $\frac{1}{4} \left(\frac{3\cos 2x}{\cosh 2 - 2\sinh 2 \tanh 1} + 1 \right)$

3.
$$\frac{x^2}{2} + \frac{3}{2} - \tanh 1$$
 and $\frac{1}{4} \left(\frac{3\cos 2x}{\cosh 2 - 2\sinh 2 \tanh 1} - 1 \right)$

4.
$$\frac{x^2}{2} + \frac{3}{2} - \tanh 1$$
 and $\frac{1}{4} \left(\frac{3\cos 2x}{\cos 2 - 2\sin 2 \tanh 1} - 1 \right)$

JUNE - 2018

PART - B

The resolvent kernel for the integral 19. equation $\phi(x) = x^2 + \int_{0}^{\infty} e^{t-x} \varphi(t) dt$ is

1.
$$e^{t-x}$$
 2. 1
3. e^{x-t} 4. $x^2 + e^{x-t}$

PART - C

20. The values of λ for which the following equation has a non-trivial solution

$$\phi(x) = \lambda \int_0^\pi K(x,t) \phi(t) dt, 0 \le \mathbf{x} \le \pi,$$
 where
$$K(x,t) = \begin{cases} \sin x \cos t, & 0 \le x \le t \\ \cos x \sin t, & t \le x \le \pi \end{cases}$$
 are

$$1. \left(n + \frac{1}{2}\right)^2 - 1, \ \mathsf{n} \in \mathbb{N}$$

2.
$$n^2 - 1$$
, $n \in \mathbb{N}$

3.
$$\frac{1}{2}(n+1)^2 - 1, n \in \mathbb{N}$$

4.
$$\frac{1}{2}(2n+1)^2 - 1, n \in \mathbb{N}$$

21. Consider the integral equation

$$\phi(x) = \lambda \int_0^{\pi} [\cos x \cos t - 2\sin x \sin t] \phi(t) dt$$

 $+\cos 7x$, $0 \le x \le \pi$

Which of the following statements are

1. For every $\lambda \in \mathbb{R}$, a solution exists

2. There exists $\lambda \in \mathbb{R}$ such that solution does not exist

3. There exists $\lambda \in \mathbb{R}$ such that there are more than one but finitely many solutions

4. There exists $\lambda \in \mathbb{R}$ such that there are infinitely many solutions

DECEMBER - 2018

PART - B

22. If φ is the solution of

$$\int_{0}^{x} (1 - x^{2} + t^{2}) \varphi(t) dt = \frac{x^{2}}{2}, \text{ then } \varphi(\sqrt{2}) \text{ is equal to}$$

1. $\sqrt{2}e^{\sqrt{2}}$

2. $\sqrt{2}e^2$

 $3 \sqrt{2}e^{2\sqrt{2}}$

4. $2e^4$

PART-C

If φ is the solution of $\varphi(x) = 1 - 2x - 4x^2 +$ 23.

$$\int_{0}^{x} [3 + 6 (x - t) - 4 (x - t)^{2}] \varphi(t) dt, \text{ then } \varphi$$
(log2) is equal to

3.6

24. characteristic and number corresponding eigenfunction of homogenous Fredholm integral equation

with kernel
$$K(x,t) = \begin{cases} x(t-1), 0 \le x \le t \\ t(x-1), t \le x \le 1 \end{cases}$$

1. $\lambda - \pi^2$, $\varphi(x) = \sin \pi x$

2. $\lambda = -2\pi^2$, $\varphi(x) = \sin 2\pi x$ 3. $\lambda = -3\pi^2$, $\varphi(x) = \sin 3\pi x$ 4. $\lambda = -4\pi^2$, $\varphi(x) = \sin 2\pi x$

<u>IOHAN INSTITUTE OF MATHEMAT</u>

Dedicated To Disseminating Mathematical Knowledge

JUNE - 19

PART - B

25. If y is a solution of

 $y(x) - \int_{0}^{x} (x-t) y(t) dt = 1$, then which of the

following is true?

- 1. y is bounded but not periodic in \mathbb{R}
- 2. y is periodic in $\mathbb R$
- $3. \int_{\mathbb{R}} y(x) dx < \infty$
- $4. \int_{\mathbb{R}} \frac{dx}{y(x)} < \infty$

PART - C

26. Consider the integral equation

 $\varphi(x) - \frac{e}{2} \int_{-1}^{1} x e^{t} \varphi(t) dt = f(x)$. Then

- 1. there exists a continuous function $f: [-1, 1] \rightarrow (0, \infty)$ for which solution
- 2. there exists a continuous function $f: [-1, 1] \rightarrow (-\infty, 0)$ for which solution
- 3. for $f(x) = e^{-x} (1 3x^2)$, a solution exists 4. for $f(x) = e^{-x} (x + x^3 + x^5)$, a solution exists

DECEMBER - 2019

PART - B

27. Let ϕ be the solution of

$$\phi(x) = 1 - 2x - 4x^2$$

$$+ \int_0^x \left[3 + 6(x - t) - 4(x - t)^2 \right] \phi(t) dt.$$

Then $\phi(1)$ is equal to 1. e^{-1} 2. e^{-2} 4. e^{2}

PART - C

28. Assume that h_1 , h_2 , g_1 and $g_2 \in C$ ([a, b]).

$$\phi(x) = f(x)$$

$$+\lambda \int_{a}^{b} [h_1(t)g_1(x) + h_2(t)g_2(x)]\phi(t) dt$$

be an integral domain. Consider the following statements:

If the given interval equation has a solution for some $f \in C([a, b])$, then

 $\int_{a}^{b} f(t) g_{1}(t) dt = 0 = \int_{a}^{b} f(t) g_{2}(t) dt.$

S₂: The given integral equation has a unique solution for every $f \in C([a,$ b]) if λ is not a characteristic number of the corresponding homogeneous equation.

Then

- 1. Both S_1 and S_2 are true
- 2. S_1 is true but S_2 is false
- 3. S₁ is false but S₂ is true
- 4. Both S₁ and S₂ are false
- 29. The integral equation

$$\phi(x) = 1 + \frac{2}{\pi} \int_0^{\pi} (\cos^2 x) \phi(t) dt$$

has

- 1. no solution
- 2. unique solution
- 3. more than one but finitely many solutions
- 4. infinitely many solutions

JUNE - 20

PART - B

30. The solution of the Fredholm integral equation

$$y(s) = s + 2 \int_0^1 (st^2 + s^2t) y(t) dt$$
 is

1.
$$y(s) = -(50s + 40s^2)$$

2.
$$y(s) = (30s + 15s^2)^{-1}$$

3.
$$y(s) = -(30s + 40s^2)$$

4.
$$y(s) = (60s + 50s^2)$$

PART - C

For the Fredholm integral equation 31.

$$y(s) = \lambda \int_0^1 e^s e^t y(t) dt$$

Which of the following statements are

1. It has a non-trivial solution satisfying

$$\int_0^1 e^t y(t) dt = 0$$

2. Only the trivial solution satisfies

$$\int_0^1 e^t y(t) dt = 0$$

- 3. It has non-trivial solution for all $\lambda \neq 0$
- 4. It has non-trivial solutions only if

$$\lambda = \frac{2}{e^2 - 1} \text{ and } \int_0^1 e^t y(t) dt \neq 0$$

<u>MOHAN INSTITUTE OF MATHEMATIO</u>

Dedicated To Disseminating Mathematical Knowledge

JUNE - 21

PART - B

- 32. Consider the integral equation $\int_{a}^{x} (x-t)u(t) dt = x; x \ge 0 \text{ for continuous}$ functions u defined on $[0, \infty)$. The equation
 - 1. A unique bounded solution
 - 2. No solution
 - 3. More than one solution u such that $|u(x)| \le C(1 + |x|)$ for some constant C
 - 4. A unique solution u such that $|u(x)| \le$ C(1 + |x|) for some constant C

PART - C

- 33. Let K(x, y) be a kernel in $[0, 1] \times [0, 1]$, defined as $K(x, y) = \sin(2\pi x) \sin(2\pi y)$. Consider the integral operator
 - $K(u)(x) = \int_0^1 u(y) K(x, y) dy$ where $u \in$ C ([0, 1]). Which of the following assertions on K are true?
 - The null space of K is infinite dimensional
 - $\int_{0}^{1} v(x) K(u)(x) dx = \int_{0}^{1} K(v)(x) u(x) dx$ for all $u, v \in C([0, 1])$
 - K has no negative eigenvalue 3.
 - K has an eigenvalue greater than 3/4

JUNE - 22

PART - B

34. For any two continuous functions

 $f, g : \mathbb{R} \to \mathbb{R}$ define

$$f * g(t) \int_0^t f(s) g(t-s) ds$$
. Which of the

following is the value of f * g(t) when f(t) = $\exp(-t)$ and $g(t) = \sin(t)$.

1.
$$\frac{1}{2} [\exp(-t) + \sin(t) - \cos(t)]$$

2.
$$\frac{1}{2} [-\exp(-t) + \sin(t) - \cos(t)]$$

3.
$$\frac{1}{2} [\exp(-t) - \sin(t) - \cos(t)]$$

4.
$$\frac{1}{2} [\exp(-t) + \sin(t) + \cos(t)]$$

Phone: 9872311001

PART - C

35. Let g be the solution of the Volterra type integral equation

$$g(s) = 1 + \int_0^s (s-t) g(t) dt$$
; for all $s \ge 0$.

What are the possible values of g(1)?

2.
$$e - \frac{1}{e}$$

3.
$$e + \frac{1}{e}$$
 4. $\frac{2}{e}$

4.
$$\frac{2}{e}$$

36. Consider the following system of Integral

$$\varphi_1(x) = \sin x + \int_0^x \varphi_2(t) dt$$

$$\varphi_2(x) = 1 - \cos x - \int_0^x \varphi_1(t) dt$$

Which of the following statements are true

- 1. φ₁ vanishes atmost countably many points
- 2. φ₁ vanishes at uncountably many points
- 3. φ_2 vanishes at atmost countably many
- 4. φ₂ vanishes at uncountably many points

JUNE - 23

PART - B

37. For the unknown y: $[0, 1] \rightarrow \mathbb{R}$, consider the following two-point boundary value problem:

$$\begin{cases} y''(x) + 2y(x) = 0 & for x \in (0,1), \\ y(0) = y(1) = 0. \end{cases}$$

It is given that the above boundary value problem corresponds to the following integral equation:

$$y(x) = 2\int_0^1 K(x,t) y(t) dt$$
 for $x \in [0,1]$.

1.
$$K(x,t) = \begin{cases} t(1-x) & fort < x \\ x(1-t) & fort > x \end{cases}$$

2.
$$K(x,t) = \begin{cases} t^2(1-x) & fort < x \\ x^2(1-t) & fort > x \end{cases}$$

1.
$$K(x,t) = \begin{cases} t(1-x) & fort < x \\ x(1-t) & fort > x \end{cases}$$
2.
$$K(x,t) = \begin{cases} t^2(1-x) & fort < x \\ x^2(1-t) & fort > x \end{cases}$$
3.
$$K(x,t) = \begin{cases} \sqrt{t}(1-x) & fort < x \\ \sqrt{x}(1-t) & fort < x \end{cases}$$

IOHAN INSTITUTE OF MATHEMAT

Dedicated To Disseminating Mathematical Knowledge

4.
$$K(x,t) = \begin{cases} \sqrt{t^3} (1-x) & fort < x \\ \sqrt{x^3} (1-t) & fort > x \end{cases}$$

PART - C

Let $\lambda_1 < \lambda_2$ be two real characteristic numbers for the following homogeneous 38. integral equation:

$$\varphi(x) = \lambda \int_0^{2\pi} \sin(x+t) \varphi(t) dt;$$

and let $\mu_1 < \mu_2$ be two real characteristic numbers for the following homogeneous integral equation:

$$\psi(x) = \mu \int_0^{\pi} \cos(x+t) \psi(t) dt.$$

Which of the following statements are true?

- 1. $\mu_1 < \lambda_1 < \lambda_2 < \mu_2$
- 2. $\lambda_1 < \mu_1 < \mu_2 < \lambda_2$
- 3. $|\mu_1 \lambda_1| = |\mu_2 \lambda_2|$
- 4. $|\mu_1 \lambda_1| = 2|\mu_2 \lambda_2|$

DECEMBER - 23

PART - B

39. The value of λ for which the integral

$$y(x) = \lambda \int_0^1 x^2 e^{x+t} y(t) dt$$

has a non-zero solution, is

- (1) $\frac{4}{1+e^2}$ (2) $\frac{2}{1+e^2}$
- (3) $\frac{4}{e^2-1}$ (4) $\frac{2}{e^2-1}$

PART - C

40. Consider the following Fredholm integral equation

$$y(x) - 3\int_0^1 tx \, y(t) \, dt = f(x),$$

where f(x) is a continuous function defined on the interval [0, 1]. Which of the following choices for f(x) have the property that the above integral equation admits at least one solution?

- (1) $f(x) = x^2 \frac{1}{2}$ (2) $f(x) = e^x$
- (3) f(x) = 2 3x
- (4) f(x) = x 1

41. Let y be the solution to the Volterra integral equation

$$y(x) = e^{x} + \int_{0}^{x} \frac{1+x^{2}}{1+t^{2}} y(t) dt.$$

Then which of the following statements are

- (1) $y(1) = \left(1 + \frac{\pi}{4}\right)e$
- (2) $y(1) = \left(1 + \frac{\pi}{2}\right)e$
- (3) $y(\sqrt{3}) = \left(1 + \frac{3\pi}{4}\right)e^{\sqrt{3}}$
- (4) $y(\sqrt{3}) = \left(1 + \frac{4\pi}{3}\right)e^{\sqrt{3}}$

JUNE - 24

PART - B

42. Let u be the solution of the Voleterra integral equation

$$\int_0^t \left[\frac{1}{2} + \sin(t - \tau) \right] u(\tau) d\tau = \sin t.$$

Then the value of u(1) is

- (1) 0
- (3) 2

PART - C

For $\lambda \in \mathbb{R}$ such that $|\lambda| < \frac{5}{32}$, let R(x, t, λ) 43.

> and u denote the resolvent kernel and the solution, respectively, of the Fredholm integral equation

$$u(x) = x + \frac{\lambda}{2} \int_{-2}^{2} (xt + x^{2}t^{2}) u(t) dt.$$

Then which of the following statements are true?

(1)
$$R(x,t,\lambda) = \frac{3xt}{3-8\lambda} - \frac{5x^2t^2}{5-32\lambda}$$

(2)
$$R(x,t,\lambda) = \frac{3xt}{3-8\lambda} + \frac{5x^2t^2}{5-32\lambda}$$

(3)
$$u(1) = -\frac{5}{5 - 32\lambda}$$

(4)
$$u(1) = \frac{3}{3 - 8\lambda}$$

OHAN INSTITUTE OF MATHEMA

Dedicated To Disseminating Mathematical Knowledge

 $c \in \mathbb{R}$, consider the following Fredholm integral equation

$$y(x) = 1 + x + cx^2 + 2\int_0^1 (1 - 3xt) y(t) dt.$$

Then the values of c for which the integral equation admits a solution are

(1) - 8

(2) -6

(3) 2

DECEMBER - 24

PART - B

45. Let $\lambda \in \mathbb{R}$, and $K:[0,1]\times[0,1]\to\mathbb{R}$ be a function such that every solution of the boundary value problem

$$\frac{d^2u}{dx^2}(x) + \lambda u(x) = 0; \frac{du}{dx}(0) = u(0),$$

$$\frac{du}{dx}(1) = 0$$

satisfies the integral equation

$$u(x) + \lambda \int_0^1 K(x,t) \upsilon(t) dt = 0.$$
 Then

$$(1) K(x,t) = \begin{cases} (1+x)(1-t), & 0 \le x \le t \le 1, \\ (1+t)(1-x), & 0 \le t < x \le 1 \end{cases}$$

$$(2) K(x,t) = \begin{cases} (-1-x), & 0 \le x \le t \le 1, \\ (-1-t), & 0 \le t < x \le 1 \end{cases}$$

(2)
$$K(x,t) = \begin{cases} (-1-x), & 0 \le x \le t \le 1 \\ (-1-t), & 0 \le t < x \le 1 \end{cases}$$

(3)
$$K(x,t) = \begin{cases} (1-x^2), & 0 \le x \le t \le 1, \\ (1-t^2), & 0 \le t < x \le 1 \end{cases}$$

(4)
$$K(x,t) = \begin{cases} (1+x)(t-1), & 0 \le x \le t \le 1, \\ (1+t)(x-1), & 0 \le t < x \le 1 \end{cases}$$

PART - C

46. The integral equation

$$u(x) = f(x) + \frac{2}{\pi} \int_0^{\pi} \sin(x - t) u(t) dt \text{ has a}$$

unique solution if

$$(1) f(x) = \cos x$$

$$(2) f(x) = \cos 5x$$

(3)
$$f(x) = \sin x$$

(4)
$$f(x) = \sin 5x$$

47. If u is the solution of the Volterra integral

$$u(x) = 3 + \sin x + \int_0^x \frac{3 + \sin x}{3 + \sin t} u(t) dt$$
, then

$$(1) u \left(\frac{\pi}{2}\right) = 4e^{\frac{\pi}{2}} \qquad (2) u(\pi) = 3e^{\pi}$$

$$(2) u(\pi) = 3e^{\pi}$$

$$(3) u(-\pi) = 4e^{-\pi}$$

(3)
$$u(-\pi) = 4e^{-\pi}$$
 (4) $u\left(-\frac{\pi}{2}\right) = 4e^{\pi}$

JUNE - 25

PART - B

48. If y(x) is the solution of the integral equation

$$y(x) = x^2 + 2 \int_0^1 x t y(t) dt$$

then which of the following statements is true?

(1)
$$y(0) + y(1) = \frac{1}{2}$$

$$(2) y(-1) + y(1) = 1$$

(3)
$$y'(0) + y'(1) = \frac{3}{2}$$

(4)
$$y'(-1) + y'(1) = 3$$

PART - C

49. Let u(x) be the solution to the Volterra integral equation

$$u(x) = x^{2} + 4\int_{0}^{x} (t - x)^{2} u(t) dt$$

Then which of the following statements are true?

2.
$$u\left(\frac{2\pi}{\sqrt{3}}\right) = \frac{1}{6} \left(e^{\frac{4\pi}{\sqrt{3}}} - e^{-\frac{2\pi}{\sqrt{3}}}\right)$$

3.
$$u\left(\frac{\pi}{2\sqrt{3}}\right) = \frac{1}{6} \left(e^{\frac{\pi}{\sqrt{3}}} - \sqrt{3}e^{-\frac{\pi}{2\sqrt{3}}}\right)$$

4.
$$u\left(\frac{\pi}{2\sqrt{3}}\right) = \frac{1}{6} \left(e^{\frac{\pi}{\sqrt{3}}} + \sqrt{3}e^{-\frac{\pi}{\sqrt{3}}}\right)$$

50. Let f and K be such that the solution of the initial value problem

$$y'' - 3y' + 2y = 4\sin(x), y(0) = 1, y'(0) = -2$$

Satisfies the Volterra integral equation

MOHAN INSTITUTE OF MATHEMATICS

Dedicated To Disseminating Mathematical Knowledge

$$y(x) = f(x) + \int_{0}^{x} K(x,t)y(t) dt.$$

Then which of the following statements are true?

- 1. $f'(\pi) = 3$
- 2. $f(\pi) + f'(\pi) = 4 \pi$
- 3. $f(\pi) + f'(\pi) = 2 \pi$
- 4. f(0) + f'(0) = -4

8

Phone: 9872311001 e-mail: mathsmim@gmail.com web: www.onlinemim.com

MOHAN INSTITUTE OF MATHEMATICS

Dedicated To Disseminating Mathematical Knowledge

ANSWERS

1. (4)	2. (1,4)	3. (1,4)
4. (3)	5. (1,4)	6. (4)
7. (3)	8. (2)	9. (2,4)
10. (1,3)	11. (4)	12. (1)
13. (1)	14. (1,4)	15. (2,3,4)
16. (2)	17. (4)	18. (2)
19. (2)	20. (1)	21. (1,4)
22. (2)	23. (1)	24. (1,4)
25. (4)	26. (3,4)	27. (3)
28. (3)	29. (1)	30. (3)
31. (2,4)	32. (2)	33. (1,2,3)
34. (3)	35.	36.
37. (1)	38. (1,3)	39. (3)
40. (1,3)	41. (2,4)	42. (1)
43. (2,4)	44. (1)	45. (2)
46. (1,2,3,4)	47. (1,2)	48. (4)
49. (1,2,3)	50. (1,2,4)	

9

Phone: 9872311001 e-mail: mathsmim@gmail.com web: www.onlinemim.com