Dedicated To Disseminating Mathematical Knowledge

NUMERICAL ANALYSIS (PREVIOUS PAPERS NET)

JUNE - 2014

PART - B

- 1. Let f(x) = ax+b for $a, b \in \mathbb{R}$. Then the iteration $x_{n+1} = f(x_n)$ starting from any given x_0 for $n \ge 0$ converges
 - 1. for all $a \in \mathbb{R}$
 - 3. for $a \in [0,1)$

- 2.for no $a \in \mathbb{R}$
- 4.only for a=0

PART - C

- Consider the function $f(x) = \sqrt{2+x}$ for $x \ge -2$ and the iteration $x_{n+1} = f(x_n)$; $n \ge 0$ for $x_0 = 1$. 2. What are the possible limits of the iteration?
 - 1. $\sqrt{2} + \sqrt{2} + \sqrt{2} + \dots$

2. -1

3. 2

- Consider the iteration $x_{n+1}=\frac{1}{2}\left(x_n+\frac{2}{x_n}\right),\ n\geq 0\ \ \text{for a given }x_0\neq 0\,.$ Then 3.
 - 1. x_n converges to $\sqrt{2}$ with rate of convergence 1.
 - 2. x_0 converges to $\sqrt{2}$ with rate of convergence 2.
 - 3. The given iteration is the fixed point iteration for $f(x) = x^2-2$.
 - 4. The given iteration is the Newton's method for $f(x) = x^2-2$.

DECEMBER - 2014

PART - C

- 4. Let f: R→Rbe a smooth function with non-vanishing derivative. The Newton's method for finding a root of f(x) = 0 is the same as
 - 1. fixed point iteration for the map g(x) = x f(x) / f'(x)
 - Forward Euler method with unit step length for the differential equation $\frac{dy}{dx} + \frac{f(y)}{f'(y)} = 0$
 - 3. fixed point iteration for g(x) = x + f(x)
 - 4. fixed point iteration for g(x) = x f(x)
- Which of the following approximations for estimating the derivative of a smooth function f at a point x 5. is of order 2 (i.e., the error term is O(h²))
- 1. $f'(x) \approx \frac{f(x+h) f(x)}{h}$ 2. $f'(x) \approx \frac{f(x+h) f(x-h)}{2h}$ 3. $f'(x) \approx \frac{3f(x) 4f(x-h) + f(x-2h)}{2h}$ 4. $f'(x) \approx \frac{-3f(x) + 4f(x+h) f(x+2h)}{2h}$
- Let y(t) satisfy the differential equation $y' = \lambda y$; y(0) = 1. Then the backward Euler method, for
 - $n \ge 1$ and h > 0 $\frac{y_n y_{n-1}}{h} = \lambda y_n$; $y_0 = 1$ yields

Dedicated To Disseminating Mathematical Knowledge

2. a polynomial approximation to $e^{\lambda nh}$

3. a rational function approximation to $e^{\lambda nh}$

4. a Chebyshev polynomial approximation to $e^{\lambda nh}$

JUNE - 2015

PART - C

7. The following numerical integration formula is exact for all polynomials of degree less than or equal to

1. Trapezoidal rule

2. Simpson's $\frac{1}{3}rd$ rule

3. Simpson's $\frac{3}{8}th$ rule

4. Gauss-Legendre 2 point formula

DECEMBER - 2015

PART - B

Let f(x) = ax + 100 for $a \in \mathbb{R}$. Then the iteration $x_{n+1} = f(x_n)$ for $n \ge 0$ and $x_0 = 0$ converges for 1. a = 5 2. a = 1 3. a = 0.1 4. a = 108.

PART - C

The iteration $x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$, $n \ge 0$ for a given $x_0 \ne 0$ is an instance of 9.

2. Newton's method for $f(x) = x^2 - 2$

1. fixed point iteration for $f(x) = x^2 - 2$ 2. Newton's method for $f(x) = x^2 - 2$ 3. fixed point iteration for $f(x) = \frac{x^2 + 2}{2x}$ 4. Newton's method for $f(x) = x^2 + 2$

Let $f(x) = \sqrt{x+3}$ for $x \ge -3$. Consider the iteration $x_{n+1} = f(x_n)$, $x_0 = 0$; $n \ge 0$ The possible limits of the 10. iteration are

1. -1

2.3

3.0

4. $\sqrt{3+\sqrt{3+\sqrt{3+...}}}$

JUNE - 2016

PART - B

Let $f(x) = x^2 + 2x + 1$ and the derivative of f at x= 1 is approximated by using the central-difference formula $f'(1) \approx \frac{f(1+h) - f(1-h)}{2h}$ with $h = \frac{1}{2}$. Then the absolute value of the error in the approximation of f'(1) is equal to

1. 1

2.1/2

3.0

4. 1/12

PART - C

Let H(x) be the cubic Hermite interpolation of $f(x) = x^4 + 1$ on the interval I = [0,1] interpolating at x = 012. and x = 1. Then

Phone: 9876311001 e-mail: mathsmim@gmail.com

Dedicated To Disseminating Mathematical Knowledge

- 1. $\max_{x \in I} |f(x) H(x)| = \frac{1}{16}$.
- 2. The maximum of |f(x) H(x)| is attained at $x = \frac{1}{2}$.
- 3. $\max_{x \in I} |f(x) H(x)| = \frac{1}{21}$.
- 4. The maximum of |f(x)-H(x)| is attained at $x=\frac{1}{4}$.
- Consider the Runge-Kutta method of the form $y_{n+1} = y_n + ak_1 + bk_2$ 13.

 $k_2 = hf(x_n + \alpha h, y_n + \beta k_1)$ to approximate the solution of the initial value problem $y'(x) = f(x, y(x)), y(x_0) = y_0$. Which of the following choices of a, b, α and β yield a second order method?

1.
$$a = \frac{1}{2}, b = \frac{1}{2}, \alpha = 1, \beta = 1$$

1.
$$a = \frac{1}{2}, b = \frac{1}{2}, \alpha = 1, \beta = 1$$
 2. $a = 1, b = 1, \alpha = \frac{1}{2}, \beta = \frac{1}{2}$

3.
$$a = \frac{1}{4}, b = \frac{3}{4}, \alpha = \frac{2}{3}, \beta = \frac{2}{3}$$
 4. $a = \frac{3}{4}, b = \frac{1}{4}, \alpha = 1, \beta = 1$

4.
$$a = \frac{3}{4}, b = \frac{1}{4}, \alpha = 1, \beta = 1$$

- Let f: $[0,3] \to \mathbb{R}$ be defined by f(x) = |1 |x 2||, where, $|\cdot|$ denotes the absolute value. Then for the 14. numerical approximation of $\int_0^3 f(x)dx$, which of the following statements are true?
 - 1. The composite trapezoid rule with three equal subintervals is exact.
 - The composite midpoint rule with three equal subintervals is exact.
 - 3. The composite trapezoid rule with four equal subintervals is exact.
 - 4. The composite midpoint rule with four equal subintervals is exact.

DECEMBER - 2016

PART - B

The values of α and β , such that $x_{n+1} = \alpha x_n \left(3 - \frac{x_n^2}{a}\right) + \beta x_n \left(1 + \frac{a}{x_n^2}\right)$ has 3^{rd} order convergence to 15.

$$\sqrt{a}$$
, are

1.
$$\alpha = \frac{3}{8}, \beta = \frac{1}{8}$$
.

3.
$$\alpha = \frac{2}{8}, \beta = \frac{2}{8}$$

2.
$$\alpha = \frac{1}{8}, \beta = \frac{3}{8}$$
.

4.
$$\alpha = \frac{1}{4}, \beta = \frac{3}{4}$$
.

PART - C

The order of linear multi step method $u_{j+1} = (1-a)u_j + au_{j-1} + \frac{h}{4}\{(a+3)u'_{j+1} + (3a+1)u'_{j-1}\}$ for 16.

3. 3 if
$$a = -1$$

4. 3 if
$$a = -2$$

solving u' = f(x,u) is

Dedicated To Disseminating Mathematical Knowledge

JUNE - 2017

PART - B

17. The magnitude of the truncation error for the scheme f'(x) = Af(x) + Bf(x+h) + Cf(x+2h) is equal to

1.
$$h^2 f'''(\xi)$$
 if $A = -\frac{5}{6h}$, $B = \frac{3}{2h}$, $C = -\frac{2}{3h}$.

2.
$$h^2 f'''(\xi)$$
 if $A = \frac{5}{6h}$, $B = \frac{3}{2h}$, $C = \frac{2}{3h}$.

3.
$$h^2 f''(x)$$
 if $A = -\frac{5}{6h}$, $B = \frac{3}{2h}$, $C = -\frac{2}{3h}$

4.
$$h^2 f''(x)$$
 if $A = \frac{5}{6h}$, $B = \frac{3}{2h}$, $C = \frac{2}{3h}$.

DECEMBER - 2017

PART - B

The iterative method $x_{n+1} = g(x_n)$ for the solution of $x^2 - x - 2 = 0$ converges quadratically in a neighbourhood of the root x = 2 if g(x) equals

1.
$$x^2 - 2$$

$$2.(x-2)^2-6$$

3.
$$1 + \frac{2}{x}$$

4.
$$\frac{x^2+2}{2x-1}$$

PART - C

19. Consider the linear system Ax=b with $A = \begin{bmatrix} 2 & 1 & -3 \\ 1 & 2 & -2 \\ -3 & -2 & 1 \end{bmatrix}$. Let x_n denote the nth Gauss-Seidel

iteration and $e_n = x_n - x$. Let M be the corresponding matrix such that $e_{n+1} = Me_n$, $n \ge 0$. Which of the following statements are necessarily true?

- 1. all eigenvalues of M have absolute value less than 1
- 2. there is an eigenvalues of M with absolute value at least 1
- 3. e_n converges to 0 as $n \rightarrow \infty$ for all $b \in \mathbb{R}^3$ and any e_0
- 4. e_n does not converge to 0 as $n{\to}\infty$ for any $b\in\mathbb{R}^3$ unless e_0 = 0
- **20.** For $f \in C[0,1]$ and n > 1, let $T(f) = \frac{1}{n} \left[\frac{1}{2} f(0) + \frac{1}{2} f(1) + \sum_{j=1}^{n-1} f\left(\frac{j}{n}\right) \right]$ be an approximation of the

integral $I(f) = \int_0^1 f(x) dx$. For which of the following functions f is T(f) = I(f)?

- 1. 1 + $\sin 2\pi nx$
- 2. 1 + $\cos 2\pi nx$
- 3. $\sin^2 2\pi nx$
- 4. $\cos^2 2\pi (n+1)x$

JUNE - 2018

PART - B

21. The values of a,b,c such that $\int_{0}^{h} f(x)dx = h\left\{af(0) + bf\left(\frac{h}{3}\right) + cf(h)\right\}$ is exact for polynomials f of

degree as high as possible are

Phone: 9876311001 e-mail: mathsmim@gmail.com

Dedicated To Disseminating Mathematical Knowledge

1.
$$a = 0$$
, $b = \frac{3}{4}$, $c = \frac{1}{4}$

3.
$$a = \frac{-2}{4}$$
, $b = \frac{3}{4}$, $c = \frac{1}{4}$

2.
$$a = \frac{3}{4}$$
, $b = \frac{2}{4}$, $c = \frac{1}{4}$

4.
$$a = 0$$
, $b = \frac{1}{4}$, $c = \frac{3}{4}$

PART - C

22. Assume that a non-singular matrix A = L + D + U, where L and U are lower and upper triangular matrices respectively with all diagonal entries are zero, and D is a diagonal matrix. Let x^* be the solution of Ax = b. Then the Gauss-Seidel iteration method $x^{(k+1)} = Hx^{(k)} + c$, k = 0, 1, 2, ... with ||H|| < 1 converges to x* provided H is equal to

1. –D⁻¹ (L + U)

1.
$$-D^{-1}(L + U)$$

3. $-D(L + U)^{-1}$

$$2.-(D + L)^{-1}U$$

4. $-(L - D)^{-1}U$

The forward difference operator is defined as $\Delta U_n = U_{n+1} - U_n$. Then which of the following 23. difference equations has an unbounded general solution?

1. $\Delta^2 U_n - 3\Delta U_n + 2U_n = 0$

2.
$$\Delta^2 U_n + \Delta U_n + \frac{1}{4} U_n = 0$$

3. $\Delta^2 U_n - 2\Delta U_n + 2U_n = 0$

4.
$$\Delta^2 U_{n+1} - \frac{1}{3} \Delta^2 U_n = 0$$

DECEMBER - 2018

PART - B

24. Let f(x) be a polynomial of unknown degree taking the values

Х	0	1	2	3
f(x)	2	7	13	16

All the fourth divided differences are -1/6. Then the coefficient of x^3 is 1. 1/3 2.-2/3

4. -1

PART - C

- 25. Let $f:[0,1] \to [0,1]$ be twice continuously differentiable function with a unique fixed point $f(x_*) = x_*$. For a given $x_0 \in (0, 1)$ consider the iteration $x_{n+1} = f(x_n)$ for $n \ge 0$. If $L = \max_{x \in [0,1]} |f'(x)|$, then which of the following are true?
 - If L < 1, then x_n converges to x_{*}.
 - 2. x_n converges to x_* provided L \geq 1.
 - 3. The error $e_n = x_n x_*$ satisfies $|e_{n+1}| < L|e_n|$.
 - 4. If $f'(x_*) = 0$, then $|e_{n+1}| < C |e_n|^2$ for some C > 0.
- $u'' + u' = 0, x \in (0,1)$ Let u(x) satisfy the boundary value problem $(BVP) \begin{cases} u(0) = 0 \end{cases}$ 26. u(1) = 1

Consider the finite difference approximation to (BVP)

Dedicated To Disseminating Mathematical Knowledge

$$(BVP)_{h} \begin{cases} \frac{U_{j+1} - 2U_{j} + U_{j-1}}{h^{2}} + \frac{U_{j+1} - U_{j-1}}{2h} = 0, j = 1,..., N - 1 \\ U_{0} = 0 \\ U_{N} = 1 \end{cases}$$

Here U_j is an approximation to $u(x_j)$, where $x_j = jh$, j = 0, ..., N is a partition of [0, 1] with h = 1/N for some positive integer N. Then which of the following are true?

- 1. There exists a solution to $(BVP)_h$ of the form $U_j = ar^j + b$ for some $a, b \in \mathbb{R}$ with $r \ne 1$ and r satisfying $(2+h)r^2 4r + (2-h) = 0$
- 2. $U_i = (r^i 1) / (r^N 1)$ where r satisfies $(2 + h) r^2 4r + (2 h) = 0$ and $r \ne 1$
- 3. u is monotonic in x
- 4. U_i is monotonic in j.

JUNE - 2019

PART - B

27. Consider solving the following system by Jacobi iteration scheme

$$x + 2my - 2mx = 1$$

$$nx + y + nz = 2$$

2mx + 2my + z = 1, where m, $n \in \mathbb{Z}$. With any initial vector, the scheme converges provided m, n, satisfy

4.
$$m = n$$

PART - C

28. The values of a, b, c so that the truncation error in the formula

$$\int_{-h}^{h} f(x) dx = ahf(-h) + bhf(0) + ahf(h) + ch^{2}f'(-h) - ch^{2}f'(h) \text{ is minimum, are}$$

1.
$$a = \frac{7}{15}, b = \frac{16}{15}, c = \frac{1}{15}$$

2.
$$a = \frac{7}{15}, b = \frac{16}{15}, c = \frac{-1}{15}$$

3.
$$a = \frac{7}{15}, b = \frac{-16}{15}, c = \frac{1}{15}$$

4.
$$a = \frac{7}{15}, b = \frac{-16}{15}, c = \frac{-1}{15}$$

29. Consider the equation $x^2 + ax + b = 0$ which has two real roots α and β . Then which of the following iteration scheme converges when x_0 is chosen sufficiently close to α ?

1.
$$x_{n+1} = -\frac{ax_n + b}{x_n}$$
, if $|\alpha| > |\beta|$

2.
$$x_{n+1} = -\frac{x_n^2 + b}{a}$$
, if $|\alpha| > 1$

3.
$$x_{n+1} = -\frac{b}{x_n + a}$$
, if $|\alpha| < |\beta|$

4.
$$x_{n+1} = -\frac{x_n^2 + b}{a}$$
, if $2|\alpha| < |\alpha + \beta|$

DECEMBER - 2019

PART - B

30. Let $x = \xi$ be a solution of $x^4 - 3x^2 + x - 10 = 0$. The rate of convergence for the iterative method $x_{n+1} = 10 - x_n^4 + 3x_n^2$ is equal to

Dedicated To Disseminating Mathematical Knowledge

PART - C

31. Consider the ordinary differential equation (ODE)

$$\begin{cases} y'(x) + y(x) = 0, & x > 0, \\ y(0) = 1. \end{cases}$$

and the following numerical scheme to solve the ODE

$$\begin{cases} \frac{Y_{n+1} - Y_{n-1}}{2h} + Y_{n-1} = 0, & n \ge 1, \\ Y_0 = 1, Y_1 = 1. \end{cases}$$

If $0 < h < \frac{1}{2}$, then which of the following statements are true?

1.
$$(Y_n) \rightarrow \infty$$
 as $n \rightarrow \infty$

2.
$$(Y_n) \rightarrow 0$$
 as $n \rightarrow \infty$

2.
$$(Y_n) \to 0$$
 as $n \to \infty$
4. $\max_{nh \in [0,T]} |y(nh) - Y_n| \to \infty as T \to \infty$

32. The values of α , A, B, C for which the quadrature formula

$$\int_{-1}^{1} (1-x) f(x) dx = Af(-\alpha) + Bf(0) + Cf(\alpha)$$

is exact for polynomials of highest possible degree, are

1.
$$\alpha = \sqrt{\frac{3}{5}}, A = \frac{5}{9} + \frac{\sqrt{5}}{3\sqrt{3}}, B = \frac{8}{9}, C = \frac{5}{9} - \frac{\sqrt{5}}{3\sqrt{3}}$$

2.
$$\alpha = \sqrt{\frac{3}{5}}, A = \frac{5}{9} - \frac{\sqrt{5}}{3\sqrt{3}}, B = \frac{8}{9}, C = \frac{5}{9} + \frac{\sqrt{5}}{3\sqrt{3}}$$

3.
$$\alpha = \sqrt{\frac{3}{5}}, A = \frac{5}{9} \left(1 - \frac{\sqrt{3}}{\sqrt{5}} \right), B = \frac{8}{9}, C = \frac{5}{9} \left(1 + \frac{\sqrt{3}}{\sqrt{5}} \right)$$

4.
$$\alpha = \sqrt{\frac{3}{5}}, A = \frac{5}{9} \left(1 + \frac{\sqrt{3}}{\sqrt{5}} \right), B = \frac{8}{9}, C = \frac{5}{9} \left(1 - \frac{\sqrt{3}}{\sqrt{5}} \right)$$

DECEMBER - 2019 (Assam)

PART - B

Assume that a, $b \in \mathbb{R} \setminus \{0\}$ and $a^2 \neq b^2$. Suppose that the Gauss-Seidel method is used to solve the 33.

system of equations
$$\begin{bmatrix} a & b \\ b & a \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
.

Then the set of all values of (a, b) such that the method converges for every choice of initial vector is

1.
$$\{(a, b) \mid a^2 < b^2\}$$

3.
$$\{(a, b) \mid |b| < |a|\}$$

2.
$$\{(a, b) \mid a < |b|\}$$

4. $\{(a, b) \mid a^2 + b^2 < 1\}$

PART - C

Consider the first order initial value problem y'(x) = -y(x), x > 0, y(0) = 1 and the corresponding 34.

numerical scheme $4\left(\frac{y_{n+1}-y_{n-1}}{2h}\right)-3\left(\frac{y_{n+1}-y_n}{h}\right)=-y_n$, with $y_0=1$, $y_1=e^{-h}$, where h is the step

size. Then which of the following statements are true?

Dedicated To Disseminating Mathematical Knowledge

1. The order of the scheme is 1

3. $|y_n - y(nh)| \rightarrow \infty$ as $n \rightarrow \infty$

2. The order of the scheme is 2

4. $|y_n - y(nh)| \rightarrow 0$ as $n \rightarrow \infty$

35. Consider the integration formula

$$\int_{x_0}^{x_1} f(x) dx = \frac{h}{2} [f(x_0) + f(x_1)] + ph^2 (f'(x_0) - f'(x_1)),$$

where $h = x_1 - x_0$. Then the constant p such that the above formula gives the exact value of the highest degree polynomial and the degree d of the corresponding polynomial are given by

1.
$$p = \frac{1}{6}, d = 4$$

2.
$$p = \frac{1}{12}, d = 3$$

3.
$$p = \frac{1}{6}, d = 3$$

4.
$$p = \frac{1}{12}, d = 4$$

JUNE - 2020

PART - B

36. Let f be an infinitely differentiable real-valued function on a bounded interval I. Take $n \ge 1$ interpolation points $\{x_0, x_1, ..., x_{n-1}\}$. Take n additional interpolation points

$$x_{n+j} = x_j + \epsilon, j = 0, 1, ..., n-1$$

where $\epsilon > 0$ is such that $\{x_0, x_1, ..., x_{2n-1}\}$ are all distinct.

Let p_{2n-1} be the Lagrange interpolation polynomial of degree 2n-1 with the interpolation points $\{x_0, x_1, ..., x_{2n-1}\}$ for the function f.

Let q_{2n-1} be the Hermite interpolation polynomial of degree 2n-1 with the interpolation points $\{x_0, x_1, ..., x_{n-1}\}$ for the function f. In the $\epsilon \to 0$ limit, the quantity

$$\sup_{x \in I} | p_{2n-1}(x) - q_{2n-1}(x) |$$

1. does not necessarily converge

2. converges to
$$\frac{1}{2n}$$

3. converges to 0

4. converges to
$$\frac{1}{2n+1}$$

PART - C

37. Fix a $\alpha \in (0, 1)$. Consider the iteration defined by

(*)
$$x_{k+1} = \frac{1}{2}(x_k^2 + \alpha)$$
, k = 0, 1, 2, ...

The above iteration has two distinct fixed points ζ_1 and ζ_2 such that $0 < \zeta_1 < 1 < \zeta_2$. Which of the following statements are true?

1. The iteration (*) is equivalent to the recurrence relation $x_{k+2} - \zeta_1 = \frac{1}{2}(x_k + \zeta_1)(x_k - \zeta_1)$, k = 0,

2. The iteration (*) is equivalent to the recurrence relation $x_{k+1} - \zeta_1 = \frac{1}{2}(x_k + \zeta_2)(x_k - \zeta_1)$, k = 0, 1, 2, ...

3. If $0 \le x_0 < \zeta_2$ then $\lim_{k \to \infty} x_k = \zeta_1$

Dedicated To Disseminating Mathematical Knowledge

4. If
$$-\zeta_2 < x_0 \le 0$$
 then $\lim_{k \to \infty} x_k = \zeta_1$

38. Consider the function $f:[0, 1] \to \mathbb{R}$ defined by

$$f(x) := \begin{cases} 2^{-\left\{1 + \left(\log_2\left(\frac{1}{x}\right)\right)^{\frac{1}{\beta}}\right\}^{\beta}} & \text{for } x \in (0,1] \\ 0 & \text{for } x = 0, \end{cases}$$

where $\beta \in (0, \infty)$ is a parameter. Consider the iterations

 $x_{k+1} = f(x_k), k = 0, 1, ...; x_0 > 0.$

Which of the following statements are true about the iteration?

- 1. For $\beta = 1$, the sequence $\{x_k\}$ converges to 0 linearly with asymptotic rate of convergence $\log_{10} 2$
- 2. For β > 1, the sequence $\{x_k\}$ does not converge to 0
- 3. For $\beta \in (0, 1)$, the sequence $\{x_k\}$ converges to 0 sublinearly
- 4. For $\beta \in (0, 1)$, the sequence $\{x_k\}$ converges to 0 superlinearly

JUNE - 2020 (Tamil Nadu)

PART - B

39. Consider the Newton-Raphson method applied to approximate the square root of a positive number α . A recursion relation for the error $e_n = x_n - \sqrt{\alpha}$ is given by

1.
$$e_{n+1} = \frac{1}{2} \left(e_n + \frac{\alpha}{e_n} \right)$$

2.
$$e_{n+1} = \frac{1}{2} \left(e_n - \frac{\alpha}{e_n} \right)$$

3.
$$e_{n+1} = \frac{1}{2} \frac{e_n^2}{e_n + \sqrt{\alpha}}$$

4.
$$e_{n+1} = \frac{e_n^2}{e_n + 2\sqrt{\alpha}}$$

PART - C

40. Consider the numerical integration formula

 $\int_{-1}^{1} g(x) dx \approx g(\alpha) + g(-\alpha), \text{ where } \alpha = (0.2)^{1/4}. \text{ Which of the following statements are true?}$

- 1. The integration formula is exact for polynomials of the form a + bx, for all $a, b \in \mathbb{R}$
- 2. The integration formula is exact for polynomials of the form $a + bx + cx^2$, for all $a, b, c \in \mathbb{R}$
- 3. The integration formula is exact for polynomials of the form $a + bx + cx^2 + dx^3$, for all a, b, c, d $\in \mathbb{R}$
- 4. The integration formula is exact for polynomials of the form $a + bx + cx^3 + dx^4$ for all a, b, c, $d \in \mathbb{R}$

JUNE - 2021

PART - B

41. Let the solution to the initial value problem

$$y' = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0.5$

be computed using the Euler's method with step-length h = 0.4. If y(0.8) and w(0.8) denote the exact and approximate solutions at t = 0.8, then an error bound for Euler's method is given by

1.
$$0.2(0.5e^2 - 2) (e^{0.4} - 1)$$

2.
$$0.1(e^{0.4}-1)$$

3.
$$0.2(0.5e^2 - 2) (e^{0.8} - 1)$$

Dedicated To Disseminating Mathematical Knowledge

4.
$$0.1(e^{0.8}-1)$$

Let a, b, $c \in \mathbb{R}$ be such that the quadrature rule 42.

$$\int_{-1}^{1} f(x) dx = af(-1) + bf'(0) + cf'(1)$$

is exact for all polynomials of degree less than or equal to 2. The a + b + c equal to

PART - C

43. The values of a, b, c, d, e for which the function

$$f(x) = \begin{cases} a(x-1)^2 + b(x-2)^3 & -\infty < x \le 2\\ c(x-1)^2 + d & 2 \le x \le 3\\ (x-1)^2 + e(x-3)^3 & 3 \le x < \infty \end{cases}$$

is a cubic spline are

1. a = c = 1, d = 0, b, e are arbitrary

2. a = b = c = 1, d = 0, e is arbitrary

3. a = b = c = d = 1, e is arbitrary

4. a = b = c = d = e = 1

Consider the Euler method for integration of the system of differential equations

$$x = -y$$

$$\dot{y} = x$$

Assume that (x_i^n, y_i^n) are the points obtained for i = 0, 1, ..., n^2 using a time-step h = 1/n starting at the initial point $(x_0, y_0) = (1, 0)$. Which of the following statements are true?

1. The points (x_i^n, y_i^n) lie on a circle of radius 1

2. $\lim_{n\to\infty} (x_n^n, y_n^n) = (\cos(1), \sin(1))$

3. $\lim_{n\to\infty} (x_2^n, y_2^n) = (1,0)$

4. $(x_i^n)^2 + (y_i^n)^2 > 1$ for $i \ge 1$

JUNE - 2022

PART - B

Let A be following invertible matrix with real positive entries $A = \begin{pmatrix} 1 & 2 \\ 8 & 9 \end{pmatrix}$. Let G be the associated 45.

Gauss-Seidel iteration matrix. What are the two eigenvalues of G?

1. 0 and $\frac{4}{3}$

2. 0 and $-\frac{4}{3}$ 3.0 and $\frac{16}{9}$ 4. $\frac{4}{3}$ and $-\frac{4}{3}$

Consider the ODE $\dot{x} = f(t,x)$ in \mathbb{R} , for a smooth function f. Consider a general second order Runge-46. Kutta formula of the form $x(t + h) = x(t) + w_1hf(t, x) + w_2hf(t + \alpha h, x + \beta hf) + O(h^3)$. Which of the following choices of $(w_1, w_2, \alpha, \beta)$ are correct?

Dedicated To Disseminating Mathematical Knowledge

1.
$$\left(\frac{1}{2}, \frac{1}{2}, 1, 1\right)$$

2.
$$\left(\frac{1}{2}, 1, \frac{1}{2}, 1\right)$$

1.
$$\left(\frac{1}{2}, \frac{1}{2}, 1, 1\right)$$
 2. $\left(\frac{1}{2}, 1, \frac{1}{2}, 1\right)$ 3. $\left(\frac{1}{4}, \frac{3}{4}, \frac{2}{3}, \frac{2}{3}\right)$ 4. $(0, 1, 1, 1)$

JUNE - 2023

PART - B

47. Which of the following values of a, b, c and d will produce a quadrature formula

$$\int_{-1}^{1} f(x) dx \approx af(-1) + bf(1) + cf'(-1) + df'(1)$$

that has degree of precision 3?

1.
$$a = 1, b = 1, c = \frac{1}{3}, d = -\frac{1}{3}$$

2.
$$a = -1, b = 1, c = \frac{1}{3}, d = -\frac{1}{3}$$

3.
$$a = 1, b = 1, c = -\frac{1}{3}, d = -\frac{1}{3}$$

4.
$$a=1, b=-1, c=\frac{1}{3}, d=-\frac{1}{3}$$

DECEMBER - 2023

PART - B

Using Euler's method with the step size 0.05, the approximate value of the solution for the initial value 48. problem $\frac{dy}{dx} = \sqrt{3x + 2y + 1}$, y(1) = 1, at x = 1.1 (rounded off to two decimal places), is

PART - C

The coefficient of x^3 in the interpolating polynomial for the data 49.

Х	0	1	2	3	4
у	1	2	1	3	5

1.
$$-\frac{1}{3}$$

2.
$$-\frac{1}{2}$$

3.
$$\frac{5}{6}$$

4.
$$\frac{17}{6}$$

Consider the initial value problem 50.

$$\frac{dy}{dx} = f(x, y), y(x_0) = y_0,$$

where f is a twice continuously differentiable function on a rectangle containing the point (x_0, y_0) . With the step-size h, let the first iterate of a second order scheme to approximate the solution of the above initial value problem be given by $y_1 = y_0 + Pk_1 + Qk_2$

where k_1 = hf (x_0, y_0) , k_2 = hf $(x_0 + \alpha_0 h, y_0 + \beta_0 k_1)$ and P, Q, $\alpha_0, \beta_0 \in \mathbb{R}$. Which of the following statements are correct?

1. If
$$\alpha_0 = 2$$
, then $\beta_0 = 2$, $P = \frac{3}{4}$, $Q = \frac{1}{4}$
2. If $\beta_0 = 3$, then $\alpha_0 = 3$, $P = \frac{5}{6}$, $Q = \frac{1}{6}$
3. If $\alpha_0 = 2$, then $\beta_0 = 2$, $P = \frac{1}{4}$, $Q = \frac{3}{4}$
4. If $\beta_0 = 3$, then $\alpha_0 = 3$, $P = \frac{1}{6}$, $Q = \frac{5}{6}$

2. If
$$\beta_0 = 3$$
, then $\alpha_0 = 3$, $P = \frac{5}{6}$, $Q = \frac{1}{6}$

3. If
$$\alpha_0 = 2$$
, then $\beta_0 = 2$, $P = \frac{1}{4}$, $Q = \frac{3}{4}$

4. If
$$\beta_0 = 3$$
, then $\alpha_0 = 3$, $P = \frac{1}{6}$, $Q = \frac{5}{6}$

JUNE - 2024

PART - B

51. If the value of the approximate solution of the initial value problem $(y'(x) = x(y(x) + 1), x \in \mathbb{R}$

$$y(0) = \beta$$

at x = 0.2 using the forward Euler method with step size 0.1 is 1.02, then the value of β is 1.0

PART - C

52. Let g(x) be the polynomial of degree at most 4 that interpolates the data

Х	-1	0	2	3	6
у	-30	1	С	10	19

If g(4) = 5, then which of the following statements are true?

$$1. c = 13$$

$$2. g(5) = 6$$

$$3. g(1) = 14$$

$$4. c = 15$$

Let S denote the set of all 2 × 2 matrices A such that the iterative sequence generated by the Gauss-53.

Seidel method applied to the system of linear equations $A^{\begin{pmatrix} x_1 \\ \end{pmatrix}} =$

converges for every initial guess. Then which of the following statements are true?

$$1. \begin{pmatrix} 5 & 8 \\ 1 & 2 \end{pmatrix} \in S$$

$$2. \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix} \in$$

$$3. \begin{pmatrix} -3 & 1 \\ 2 & 3 \end{pmatrix} \in S$$

$$4. \begin{pmatrix} 2 & 2 \\ 4 & 3 \end{pmatrix} \in S$$

DECEMBER - 2024

PART - B

Let $f: \mathbb{R} \to \mathbb{R}$ be such that $\sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|} = L$, where $1 < L < \infty$. Let $h: \mathbb{R} \to \mathbb{R}$ be a differentiable 54.

function satisfying $|h'(x)| \le \frac{3}{4}$ for all $x \in \mathbb{R}$. For $\alpha > 0$, define $g(x) = \alpha f(x) + h(x)$ for $x \in \mathbb{R}$.

Consider the sequence $\{x_k\}_{k=0}^\infty$ defined by $x_{k+1}=g(x_k),\,k=0,1,...$, where $x_0\in\mathbb{R}$. The sequence $\left\{x_k^{}\right\}_{k=0}^{\infty}$ converges to the solution of the equation x=g(x) if

$$(1) \alpha < \frac{2}{3L}$$

$$(2) \alpha < \frac{3}{2L}$$

(3)
$$\alpha$$
 < 4 L

$$(3) \alpha < 4L \qquad (4) \alpha < \frac{1}{4L}$$

PART - C

55. Let f(x) be the polynomial of degree at most 2 that interpolates the data (-1,2), (0,1) and (1,2). If g(x)is a polynomial of degree at most 3 such that f(x)+g(x) interpolates the data (-1,2), (0,1), (1,2) and (2,17), then

(1) f(5)+g(3)=50

(2) 2f(5)-g(3)=4

(3) f(1)+g(3)=50

(4) f(5)+g(3)=74

Dedicated To Disseminating Mathematical Knowledge

56. If $\lambda \in \mathbb{R}$ and $p \in \mathbb{R}$ are such that the quadrature formula

$$\int_{x_0}^{x_0+h} f(x) dx \approx \lambda h(f(x_0) + f(x_0+h)) + ph^3(f''(x_0) + f''(x_0+h)) \text{ is exact for all polynomials of } f(x) dx \approx h(f(x_0) + f(x_0+h)) + ph^3(f''(x_0) + f''(x_0+h)) \text{ is exact for all polynomials of } f(x) dx \approx h(f(x_0) + f(x_0+h)) + ph^3(f''(x_0) + f''(x_0+h)) \text{ is exact for all polynomials of } f(x) dx \approx h(f(x_0) + f(x_0+h)) + ph^3(f''(x_0) + f''(x_0+h)) \text{ is exact for all polynomials of } f(x) dx \approx h(f(x_0) + f(x_0+h)) + ph^3(f''(x_0) + f''(x_0+h)) \text{ is exact for all polynomials of } f(x) dx \approx h(f(x_0) + f(x_0+h)) + ph^3(f''(x_0) + f''(x_0+h)) \text{ is exact for all polynomials of } f(x) dx \approx h(f(x_0) + f(x_0+h)) + ph^3(f''(x_0) + f''(x_0+h)) \text{ is exact for all polynomials of } f(x) dx \approx h(f(x_0) + f(x_0+h)) + h(f(x_0) + f''(x_0+h)) \text{ is exact for all polynomials of } f(x) dx \approx h(f(x_0) + f(x_0+h)) + h(f(x_0) + f(x_0+h$$

degree as high as possible, then

$$(1) 2\lambda + 24p = 0$$

(2)
$$7\lambda - 12p = 4$$

(3)
$$2\lambda + 24p = -3$$

(4)
$$7\lambda - 12p = 11$$

DECEMBER - 2025

PART - B

57. If the function $s:[0, 4] \to \mathbb{R}$ defined by

$$s(x) = \begin{cases} a(x-2)^2 + b(x-1)^2, & 0 \le x \le 1, \\ (x-2)^2, & 1 < x \le 3, \\ 2c(x-2)^2 + (x-3)^3, & 3 < x \le 4 \end{cases}$$

is a cubic spline, then the value of 2a + b + 2c is

Phone: 9876311001

PART-C

58. If $\alpha, \beta \in \mathbb{R}$ are such that the equation

$$\int_{0}^{3} f(x)dx = \frac{3}{2} [f(\alpha) + f(\alpha + \beta)]$$

holds for all polynomials f(x) of degree less than or equal to 2, then which of the following statements are true?

1.
$$(\alpha, \beta) = \left(\frac{3 - \sqrt{3}}{2}, \sqrt{3}\right) or(\alpha, \beta) = \left(\frac{3 + \sqrt{3}}{2}, -\sqrt{3}\right)$$

2.
$$(\alpha, \beta) = \left(\frac{3-\sqrt{2}}{2}, \sqrt{2}\right) or(\alpha, \beta) = \left(\frac{3+\sqrt{2}}{2}, -\sqrt{2}\right)$$

3.
$$(\alpha, \beta) = \left(\frac{3-\sqrt{5}}{2}, \sqrt{5}\right) or(\alpha, \beta) = \left(\frac{3+\sqrt{5}}{2}, -\sqrt{5}\right)$$

4.
$$(\alpha, \beta) = \left(\frac{3-\sqrt{7}}{2}, \sqrt{7}\right) or(\alpha, \beta) = \left(\frac{3+\sqrt{7}}{2}, -\sqrt{7}\right)$$

MOHAN INSTITUTE OF MATHEMATICS Dedicated To Disseminating Mathematical Knowledge

	—
ANSWER	≀ KEY

5. (1, 3)
, ,
2. (1,2)
8.(4)
24. (1)
0. (1)
66. (3)
2. (1)
8. (3)
54.(4)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Phone: 9876311001 e-mail: mathsmim@gmail.com